Understanding the definition:

O we learn the least significant bit of a message given only the ciphertext (assuming a semantically-secure apher) No! Suppose we could. Then, adversary can choose two messages mo, m, that differ in their least significant lit and distinguish with probability 1.

This generalizes to <u>any</u> efficiently-computable property of the two messages.

This generalizes to any efficiently completely opposite property of the two messages.
\nHow does semantic security relate to perfect secrecy?
\nHowever. If a cipher satisfies perfect secrecy, then it is semantically secure.
\nProof: Perfect secrecy means that Y m, m, c, n, c, c. :
\n
$$
Pr[k \leq K : EveryH(k,m_0) = c] = Pr[k \leq K : EveryH(k,m_1) = c]
$$
\nEquivalently, the distributions
\n
$$
\frac{\{k \leq K : EveryH(k,m_0) = c\} = Pr[k \leq K : EveryH(k,m_1) = c]}{D_0}
$$
\nare identical (D₀ = D₁). This means that the adversary's output b' is identically distributed in the two experiments, and so

E quivalently, the distributions

$$
\underbrace{\{k \stackrel{R}{\leftarrow} K : \text{Energy } (k, m_0)\}}_{\mathcal{D}_0} \quad \text{and} \quad \underbrace{\{k \stackrel{R}{\leftarrow} K : \text{Every } (k, m_1)\}}_{\mathcal{D}_1}
$$

 $SSAUS[A, \pi_{\delta E}] = |W_{o} - W_{i}| = 0.$

~encryption key (PRG seed) ^W seems straightforward, -lary. The one-time pad is semantically secure. C- 6(s) em ↑ butakes some care to prove < L - m = 6(s) @ ^c orem. Let6 be ^a secure PRC. Then, the resulting stream cipher constructed from ⁶ is semanticallysecure.

Prof. Consider the semantic security experiments:

o the semantic security experiments.
Experiment 0: Adversary chooses mo, m, and receives co = G(s) @ mo { Want to show that adversary's Experiment 0: Adversary chooses mo, m, and receives $c_o = G(s) \oplus m_o$ (what to show that adversary's
Experiment 1: Adversary chooses mo, m, and receives $c_i = G(s) \oplus m_i$ indistinguishable Let $W_0 = Pr[A]$ outputs 1 in Experiment 0]

W, ⁼ PrIAoutputs ¹ in Experiment 1]

 Δt Δt G(s) is uniform random string (i.e., one-time pad), then $W_0 = W_L$. But G(s) is like a one-time pad! es: 14 GGS is uniform romdom string (i.e., one-time pad), then Wo = W1. But GGSJ is like a or
Define Experiment O': Adversary chooses mo, m, and receives co = t @ mo where t & fo.13"
Experiment I': Adversary chooses mo, m, Define ω_0' , ω_1' accordingly.

First, observe that
$$
W_0' = W_1'
$$
 (one-time pad is perfectly secure).
\nNow we show that $|W_0 - W_0'| = neg_1$ and $|W_1 - W_1'| \le neg_1$.
\n $\Rightarrow |W_0 - W_1| = |W_0 - W_0' + W_0' - W_1' + W_1' - W_1|$
\n $\le |W_0 - W_0'| + |W_0' - W_1'| + |W_1' - W_1|$ by triangle inequality
\n $= neg_1 + neg_1 = neg_1$.

Show. If G is a secure PRG, then for all efficient A, $| \omega_{o} - \omega_{o}' |$ = negl. Common proof technique: prove the <u>contrapositive</u>. <u>Show</u>. If
Co
<u>Contrapositiv</u>

<u>Contrapositive</u>: If A can distinguish Experiments 0 and $0'$, then G is <u>not</u> a secure PRG.

Suppose there exists efficient A that distinguishes Experiment O from O' \Rightarrow We use A to construct efficient adversary B that breaks security of G. In this step is a <u>reduction</u> Amagnetine: If A can distinguish Experiments 0 and 0, then G is not a s

upper there exists efficient A that distinguishes Experiment 0 from 0'
 \Rightarrow Obe we A to construct efficient odversary B that breaks se
 \Rightarrow This s

 $[$ we show how adversary (i.e., algorithm) for distinguishing Exp. 0 and $0' \implies$ adversary for PRG]

 $Alqoridhm$ B (PRG adversary): $b \in \{0, 1\}$

For distinguishing
PRG challenger
PRG challenger \rightarrow $f_{b=0}: s \stackrel{R}{\leftarrow} \text{for } s$ $t \leftarrow G(s)$ $=1: t \leftarrow$ { \circ ,()ⁿ

 $\frac{A}{\lambda}$ if b = Algorithm A expects to it
to m
where + = G getupe PRG adversary
A
- mo, m, em
+ Om
) $\frac{m_{o,m_{i}}\epsilon}{\epsilon + \Theta}$ $\frac{1}{\sqrt{1-\frac{1}{2}}}$ m en adversary (i.e., agar
.
.
. t ↳'E90,13

Running time ofB ⁼ running time of ^A ⁼ efficient

Compute PRCAdr[B, 6].

SAdv[B, G].
Pr[B outputs 1 if b=0] = Wo < if b=0, then A gets G(s) & m which is precisely the behavior in Exp. 0 Pr[B outputs 1 if $b = 1$] = $W_0' \leftarrow$ if $b = 1$, then A gets $\pm \oplus m$ which is precisely the behavior in Exp. O => PRGAdv[B,G] = $|$ Wo-Wol, which is non-negligible by assumption. This proves the contrapositive.

Important note: Security of above schemes shown assuming message space is $\{0,1\}^n$ (i.e., all messages are n-bits long) In practice: We have variable-length messages. In this case, security guarantees indistinguishability from other messages of the same length, but length itself is leaked [inevitable if we want short ciphertexts] ...

an be problematic - see traffic analysis attacks!

So far, we have shown that if we have a PRG, then we can encrypt messages efficiently (stream cipter)

Question: Do PRGs exist?

Unfortunately, we do not know!

 $\underbrace{\text{Claim: If } PRGs \text{ with non-trivial stretch exist, then } P \neq NP.}$

 $\frac{p_{\text{ref.}}}{q_{\text{sup}}}=5$ for 13^{2} \Rightarrow for 13^{2} is a secure PRG. Consider the following <u>decision</u> problem: on input t ϵ for 13", does there exist $s \in \{0, 13^2 \text{ such that } t = G(s)\}$

This problem is in NP (in particular, s is the witness). If G is secure, then no polynomial-time algorithm can solve this problem (if there was a polynomial-time algorithm for this problem, then it breaks PRF security with on input t E 20.15, does there exist 5 E 10.
This problem is in NP (in particular, 5 is the witness). If
this problem (if there was a polynomial-time algorithm for
advantage $1-\frac{1}{2^{n-2}} > \frac{1}{2}$ since $n > \lambda$). Thus, P =

In fact, there cannot even be a <u>probabilistic</u> polynomial-time algorithm that solves this problem with probability better than In fact, there cannot even be a <u>probabilistic</u> polynomial-fine algorithm that solves this problem with probability
I t & for non-negligible & > 0. This means that there is no BPP algorithm that breaks PRG security:

 f PRGs exist, then $NP \not\in BPP$

↑ bounded error probabilistic polynomial time

"randomized algorithms thatsolves problem with bounded (constant) error"

Thus, proving existence of PRG requires resolving long-standing open questions in complexity theory!

 \Rightarrow Cryptography: We will assume that certain problems are hard and base constructions of (hopefully small) number of "candomized algorithms that solves posblem with bounded (
Proving existence of PRG requires resolving long-standing open questions in complexity theory!
Deptography: We will assume that certain problems are hard and base c conjectures. -

> Thardress assumptions can be that certain mathematical problems are intractable (e.g., factoring) the typically for public-key cryptography (and half of this course)

> - Hardness assumptions can be that certain constructions are secure (e.g., "AES is a secure block cps") ↳ typically for symmetric cryptography

Lis constructions are more ad hoc, rely on heuristics, but very fast in practice

Examples of stream ciphers (PRGs): designed to be very fast (oftentimes with hardware support) - Linear congruential generator (e.g., rand() function in () $r_{i+1} = \alpha r_i + b$ (mod m) \Rightarrow typical implementation: output is a ardware support)
- typical implementation: 00
- few bits of ro,r,r₂...
- (value of ro,r,r,r,...n (full α, b, m are public constants } very simple, easy to implement α, b, m are $\alpha, c_1, c_2, ...$ never revealed) ro is the initial seed (especially when m is a power of 2) \rightarrow or $\lfloor r_i/ \rfloor$ \mapsto need to choose so outputs have long period To is the initial seed and Cespecially when m is a power of 2)

Indeed to choose so outputs have

<u>Not</u> a cryptographic PRG: NEVER USE rand() To GENERATE CRYPTOGRAPHIC KEYS? - Given full outputs, outputs fullypredictable (if enough bits of state revealed, can brute force unknown bits) - Even given partial outputs (e.g., least significant few bits of output) and having secret a,b, m, can still be broken (linear functions are not secure! see Boneh-Shoup Ch. 3.7.1 and related papers) Often good enough for non-cryptographic applications (e.g., statistical simulation) - Linear feedback shift registers (LFSRs) initial state of LFSR r initial state of LFSR
determined by the seed $\frac{1}{\sqrt{1-\frac{1$ seed Seepectally when m is a power of 2)
 \rightarrow need to choose so output

NEVER USE rand() To GENERATE CRYPTOGRAPHIC

outputs fully predictable (if enough list of state revealed, co

outputs (e.g., least significant few bit very friendly for hardware implementations W taps (fixed for the construction) ~"linear Sinear feedback" Address are not secure
for non-cryptographic
(LFSRs)
Perister :
are feedback"
output by LFSR linear function of register state (addition modulo 2)

Each iteration: rightmost bit is output by LFSR

bits at tap positions are xored and shifted in from the left
1 clock cycle = 1 output bit - very simple and fast!

 $\frac{a}{b}$ and laps positions are ported and shipped in the

By itself, LFSR is totally broken: after observing n-bits of output, the entire state of the LFSR is known and subsequent bits are completely predictable!

Proposal: Use multiple LFSRs and combine in some non-linear way: