Observe that a label of the one be used in a correct as PBC:
\n
$$
E: [0,0]^2 \Rightarrow [0,0]^2 \Rightarrow [0,1]^3 \Rightarrow [0,0]^4 \Rightarrow 0
$$
\n
$$
E: [0,0]^2 \Rightarrow [0,0]^4 \Rightarrow 0
$$
\n
$$
E: [0,0] \Rightarrow [0,0]^4 \Rightarrow 0
$$
\n
$$
E: [0,0] \Rightarrow [0,0]^4 \Rightarrow 0
$$
\n
$$
E: [0,0] \Rightarrow [
$$

<u> 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 195</u>

 $\overline{}$

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Thus for: PRP/PRF in "counter mode" gives us a stream cipter (one-time encryption scheme)

Ihus for : PRP/PRF in "counter mode" gives us a stream cipter (one-time encryption scheme)
How do we reuse it? Choose a <u>random</u> starting point (called an initialization rector) nonce (value that does not repeat) and
"rand

render mode"
"rendomized courter mode"
m₁ m₂ m₃ m₄
Pandom
TV F(k, IV) F(k, IV+1) F(k, IV+2) F(k, IV+3) divide message into blocks (based on block size of PRES IF in "counter mode" gives us a stre

? Choose a <u>random</u> starting point

"randomized counter mode"

m₁ m₂ m₃ m₄

modom

TV F(k,IV) F(k,IV+) F(k,IV2) F(k,IV

TV C₁ C₂ C₃ C4

Observe: Ciphortext is brags than

 TV C_1 C_2 C_3 C_4 C_1 C_2

serve : ciphertext is longer than the message (required for CPA security)

 τ Theorem: Let $F: K* X \rightarrow Y$ be a secure PRF and let τ McTR denote the randomized counter mode encryption scheme from above for l -block nessages (m = $\chi^{\leq \ell}$). Then, for all efficient CPA adversaries A, there exists an efficient PRE adversary B such that

CPAAdvIA,TciR] ⁺ 2 . PREAdrIB, FS & Q: number of encryption queries 1 : number of blocks in message -

<u>Intuition:</u> If there are no collisions (i.e ., PRF never evaluated on the same block), then it is as if everything is encrypted under a fresh one-time pad.

2. Collision event: $(x, x +1, ..., x +k-1)$ overlaps with $(x', x'+1, ..., x'+k-1)$ when $x, x' \stackrel{R}{\leftarrow} \chi$

$$
\begin{array}{c}\n+ \\
x+2 \\
\hline\n\end{array}
$$

 $\begin{align*} \begin{aligned} \sum_{x \in \mathcal{X}} x \cdot x \quad \text{and} \quad x' \quad \text{lies in this interval is} \quad &\leq \frac{2k}{|x|} \end{aligned} \end{align*}$

$$
x+2
$$
 $x \neq 2$
\n $x+2$ $x \neq 2$
\nProbability that x'
\n y probability that x'
\n
\n y probability that x'
\n y = probability that x'
\n y =

3. Remaining factor of 2 in advantage due to intermediate distribution (hybrid argument) : $Energy \, m_o$ with PRF $SPR = \bigcup_{x \in P} PRFAdv[B,F] +$ P [collision] $\leq \frac{2lQ^2}{|\chi|}$
2 in advantage due to intermediate distribution (hybrid argument):
Encrypt mo with PRF
Encrypt mo with fresh one-time pad ≤ 0 Encrypt ^M , with fresh one-time pad Encrypt m, with PRF \$PRFAdr[B, F] + $\frac{2RQ^{3}}{|X|}$

Interpretation: If $|x|$ = 2¹²⁸ (e.g., AES), and messages are 1 MB long (2¹⁶ blocks) and we want the distinguishing advantage to be below 2^{-32} , then we can use the same key to encrypt -71
, and
 $we can$
 $\frac{17(12)}{12}$ α = $\sqrt{\frac{17! \cdot 2^{-52}}{4 \cdot 2}} = \sqrt{\frac{2^{16}}{2^{18}}} = \sqrt{2^{78}}$ $\frac{1}{52}$ = $\sqrt{\frac{2^{16}}{2^{18}}}$ = $\sqrt{2^{78}}$ = 2^{39} (~ 1 trillion messages!) PRF
 PRF
 $are \, 1 \, MB$
 $same \, kry$
 $\sqrt{\frac{2^{16}}{2^{16}}}$

-based counter mode : divide IV into two pieces : IV ⁼ noncell counter

value that does not repeat

common choices : 64-bit nonce, 64-bit counter only nonce needs to be sent!
Slightly smaller ciphertests)

↑

96-bit nonce, 32-bit counter

Only requirement for security is that IV does not repeat : Common
Thement for security is
Option 2: It seader t rea

- Option 1: Choose randomly (either IV or nonce)

- Option 2: If sender + recipient have shared state (e.g., packet counter), can just use a counter, in which case , IV/nonce does not have to be sent

(CTR)

Counter mode is parallelizable, simple-to-implement , just requires PRE - preferred mode of using block ciphers

Other block cipher modes of operation:

Cipherblock chaining (CBC) : common mode in the past (e.g., TLS 1.0, still widely used today)

Theorem: Let $F: K \times X \rightarrow Y$ be a secure PRF and let Theoc denote the CBC encryption scheme for k -block m essages (m = $\chi^{\leq R}$). Then, for all efficient CPA adversaries A , there exists an efficient PRF adversary B such that T. Then, for all efficient G
CPAAdv[A, T_{CBC}] $\leq \frac{2Q^2 l^2}{|\chi|} +$ J·PRFAdv[B,F]

> **L** Q: number of encryption queries 1 : number of blocks in message

Intuition : similar to analysis of randomized counter mode :

1 . Ciphertext is indistinguishable from random string if PRP is evaluated on distinct inputs

1. Ciphertext is indistinguishable from pandom string if MP is evaluated on distinct inquits
2. When encrypting, PRP is involted on ℓ random blocks, so after Q queries, we have Ql random blocks. - encrypting, PRP is involted on ℓ random blocks, so other Q querics, we have Ql random blocks.
=> Collision probability $\leq \frac{G^2 \ell^2}{|\chi|}$ $\leq \frac{f_{\text{his}}}{|\chi|}$ is larger than collision grob. For randomized counter factor of $\frac{1}{2}$ [overlap of Q random intervals vs. QR random prints] C. Primer is massinguishable from paradim sming if $n1$ is evaluated on a striker in

When energy probability $\leq \frac{C^2R^2}{|\chi|}$. This is longer than collision grob for readim

Foctor of 2 orises for some reason as befo

3. Factor of 2 arises for same reason as before

Interpretation. CBC mode provides weaker security compared to counter mode: $\frac{20^2 l^2}{|X|}$ Vs. 121 ation. CBC mode provides weaker security compared to counter mode : 1x1 Vs.
Concretely: for same parameters as before (1MB messages, 2⁻³² distinguishing advantage): Assumed to be to the messages, it is the distinguishing advantages).
 $Q \le \sqrt{\frac{1x! \cdot x^{32}}{2x^2}} = \sqrt{\frac{2^{n\phi} \cdot x^{32}}{2 (z^b)^2}} = \sqrt{x^{63}} = \sqrt{x^{63}} = (1 - 1)$ billion messages)

 \mapsto 2^{75} \sim 180x smaller than using counter mode

Padding in CBC mode: each ciphertext block is computed by feeding a message block into the PRP => message must be an even multiple of the block size \Rightarrow when used in practice, need to pad messages Can we pad with zeroes? Cannot decrypt! What if original message ended with a bunch of zeroes?

Requirement : padding must be invertible

 \texttt{CBC} padding in TLS 1.0 : if k bytes of pudding is needed, then appead k bytes to the end, with each byte set to k-1 (for AES-CBC) if O bytes of padding is needed, then append a block of 16 bytes, with each byte equal to 15 Le dummy block needed to ensure pad is invertible injective functions <u>must</u> expand: \Rightarrow called PKCS#5/PKCS#7 (public-key cryptography standards) $\left| \begin{array}{c} \text{1} & \text{1$

Need to pad in CBC encryption can be exploited in "padding oracle" attacks

Padding in CBC can be avoided using idea called "ciphertext stealing" (as long as messages are more than I block) interesting traffic analysis attack : each keystroke is sent in separate packet, so # packets leaks info on

In of zenes?

It to the end, with each byte set to kill

It's bytes, with each byte equal to 15

njective functions <u>must</u> expand:
 $\begin{bmatrix} 10,15^{-256} | > \\ 10,13^{66} | > \\ 10,13^{66} | > \\ 10,13^{66} | > \\ 10,13^{66} | > \\ 10,13^{$ of user's passive can be explored to example a back in the passive must compute the comparison of the computer of user's passwood!
imagine 1 byte messages) mode CBC mode 1. no padding needed (shorter ciphertogs) mode CBC mode (shorter ciphertexts) (e.g., encrypted key strokes) 1. padding needed 2. parallelizable 2. 2. sequential 1 block + I byte with CFR
3. requires $PRP \leftarrow \lambda$ blocks with CBC 3. Only requires PRF (no need to invert) 3. requires $PRP \leftarrow$ 2 blocks with CBC 3. requires PRP <
4. less tight security 4. tighter security requires more structured primitive, 5. IUs have to be non-repeating jeasy to implement : Cre-key more often) more code to implement forward and backward evaluation land spaced far apart) noncell counter 5. (re-key move often)
requires <u>unprodictuble</u> table IVs ↑ only needs to be * TLS ¹ .0 used predictable IVs non-repeating (can be predictable) (see HWI for an attack) SSH v1 used a 0 IV Leven worse ! (particular contents of the special state of the specia

Bottom-line : use randomized or nonce-based counter mode whenever possible : simpler, easier, and better than CBC!

^A tempting and had way to use ^a block cipher : ECB mode (electronic codebook)

NEVER USE ECB MODE FOR ENCRIPTION &