Message integrity: Confider	ntiality alone not sufficient, also need	Message integrity. Otherwise adverso	sy can tamper with the message
	(e.g., "Send \$100 to Bob" \rightarrow "S	iend \$100 to Eve")	
In s	ome cases le.g., software poetche	1	an confidentiality
			we want is togs should be hard to forge)
			this tolerates a single error
Observation: The tra	should be computed using a	kered-function	this tolerates a single error (better error-correcting codes can do much example is to set tag to be the parity)
- E. 1 - L 1	as interior of short of COC ()	adual and alask) (amala	better)
- Example of keyle	is integrity check. CRC (cyclic	readingancy Check) [simple	example (5 to set tag to be the party)
			for doctar integrity? Fixed In SSH V2 (1996)
		used in WEP (802-11b) protoco	
<u>Problem</u> : If there is no	s key, anyone can compute it	! Adversary can tamper will	n message and compute the new tag.
<u>Definition</u> . A message	authentication code (MAC) with	key-space K, message space 1	N and tag space T is a tuple of
	TIMAC = (Sign, Verity):		
	m: K×M → T	Must be efficiently-com	purtable
_	ify: K* m * T -> {0,1/}	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\
C	. ALGU Y. GM.		
Correctuers	: VKEK, Vmem:	1 - 1 7 - 1	
	Pr [Verify (k, m, Sign(k, m)) = 1] = 1	
	Sign	can be a <u>randomized</u> algorith	м.
Defining security: Into	uitively, adversary should not be	able to compute a tag o	n any message without knowledge of the key
0 /			n existing messages (e.g., signed software
		p towards creating a new	
		adversary	gets to choose to be signed
D 0 0.444 T	-(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		
	i i i i i i i i i i i i i i i i i i i		ssage attacks (EUF-CMA) if for all efficient
adversaries	A, MACAdv[A, $T_{MAC}] = P_{r}[W=1] =$	$negl(\lambda)$, where W is the output	of the following security game:
	adversary	challenger As usual, > d	unotes the length of the MAC secret key
		REK (e.g., log	1 = poly (2))
	adversary	Note: the key	can also be sampled by a special KeyGen
		Olgorithan	- (for simplicity, use just define it to be
	J		
	(m*, t*)	October 1 and 1	y random)
, ,			
		wersary submits to the challenger,	and let t; < Sign(k, mi) be the challenger's
responses. T	Hen, $W = 1$ if and only if:		
	Verify $(k, m^*, t^*) = 1$ and	(m*, t*) & {(m1, +1),, (ma, t)	{(e
	<u> </u>		
MAC security notion says	that adversary connot produce a n	ew tag on any message even if	it gets to obtain tags on messages of its
choosing.			
3,003.7			
-		10.0	
First, we show that	we can directly construct a M	AHC from any PKF.	

MACs from PRFs: Let $F: K \times M \to T$ be a PRF. We construct a MAC Timac over (K, M, T) as follows: Sign $(k, m): Output \ t \leftarrow F(k, m)$ Verify $(k, m, t): Output \ 1: f \ t = F(k, m)$ and O otherwise

Theorem. If F is a secure PRF with a sufficiently large range, then ITMAC defined above is a secure MAC. Specifically, for every efficient MAC adversary A, there exists an efficient PRF adversary B such that MACAda(A, Tranc) < PRFAda(B, F) + 171.

Intuition for proof: 1. Output of PRF is computationally indistinguishable from that of a truly random function

2. If we replace the PRF with a truly random function, adversary wins the MAC game only if it correctly predicts the random function at a new point. Success probability is then exactly 117).

Implication: Any PRF with large output space can be used as a MAC.

-> AES has 128-64 output space, so can be used as a MAC

Drawbock: Domain of AES is 128-bits, so can only sign 128-bit (16-byte) messages

How do we sign longer messages? We will look at two types of constructions:

- 1. Constructing a large-domain PRF from a small-domain PRF (i.e., AES)
- 2. Hash-based constructions

So far, we have focused on constructing a large-domain PRF from a small-domain PRF: in order to construct a MAC on long messages

-> Alternative approach: "compress" the message itself (e.g., "hash the message) and MAC the compressed representation

Still require unforgeobility: two messages should not hash to the same value [otherwise trivial attack: if H(m1)=H(m2), then MAC on m1 is also MAC on m2]

L> counter-intuitive: it hash value is shorter than messages, collisions always exist - so use can only require that they are hard to find

<u>Definition</u>. A hash function $H: M \to T$ is collision-resistant if for efficient adversaries A, $CRHFAdv[A,H] = Pr[(m_0,m_1) \leftarrow A : H(m_0) = H(m_1)] = regl.$

As stated, definition is publiculate: if IMI > 171, then the always exists a collision mo, mi, so consider the adversary that has mo, mi, hard coded and outperts mo, mi,

Thus, some advertacy always exists (even if we may not be able to write it down explicitly)

- Formally, we model the hash function as being parameterized by an additional parameter (e.g., a "system parameter" or a "key") so adversary current output a hard-coded collision
- In practice, we have a concrete function (e.g., SHA-256) that does not include security or system parameters

 -> believed to be hard to find a collision even though there are infinitely-many (SHA-256 can take inputs

 of arbitrary length)

MAC from CRHFS: Suppose we have the following

- A MAC (Sign, Verify) with key space K, message space Mo and tog space T [eg., Mo = {0,13256}]
- A collision-resistant hach function H: M, -> Mo

Define S'(k,m) = S(k, H(m)) and V'(k, m, t) = V(k, H(m), t)

Theorem. Suppose Thac = (Sign, Verify) is a secure MAC and H is a CRHF. Then, That is a secure MAC. Specifically, for every efficient adversary A, there exist efficient adversaries B, and B, such that

MACAdu[A, Thac] < MACAdu[B, Thac] + CRHFAdu[B, H]

Proof Idea. Suppose A manages to produce a valid forgery t on a message m. Then, it must be the case that

— t is a valid MAC on H(m) under Trusc

- The A queries the signing oracle on $m' \neq m$ where H(m') = H(m), then A breaks collision-resistance of H.

 If A never queries signing oracle on m' where H(m') = H(m), then it has never seen a MAC on H(m) under Timps. Thus, A breaks security of Timps.
- [See Boreh-Shoup for formal argument very similar to above: just introduce event for collision occurring is not occurring]