eintegrity : Confidentiality alone not sufficient, also need integrity. Otherwise adversary can tamper with the message Le. g , " Send \$¹⁰⁰ to Bob" -> "Send \$¹⁰⁰ to Eve") In some cases (e. g., software patches), integrity more important than confidentiality Edea : Append ^a "tag" (also called ^a "signature") to the message to prove integrity /property we want is tags should be hard to forge) his tolerates a single error servation: The tag should be computed using ^a keyedfunction (better error-correcting * codes can do much better) ↳ Example of keyless integrity check : CRC (cyclic redundancy check) I simple example is to set tag to be the parity] ↳ this was used in SSH ^v (1995) for data integrity ! Fixed in SSHV2 (1996) ↳ also used in WEP 1802. 11b) protocol for integrity also booken! birm:Iftheresnokey aonecan compute^t!Adversarcanamterwith messageand ^a computethe me g e algorithms TMA)= (Sign, Verify) : Sign : ^K xMt ^T Verify : 1 ^x MxT - ⁵⁰ , ¹³ ³ Must be efficiently computable Errectness : YKEK, FmEM : Pr[Verify (k, ^m , Sign(k,m)) ⁼ 1] ⁼ I 4Sign can be ^a monized algorithm Emi security : Intuitively, adversary should not be able to compute ^a tag on any message without knowledge of the key ↳ Moreover, since adversary might be able to see tays on existing messages (e. g., signed software updates) , it should not help towards creating ^a new MAC adversary gets to choose messages to - Definition. ^A MAC TMAC (Sign, Verify) satisfies existential unforgeability against chosen message attacks (EUF-CMA) if for all efficient be signed

adversaries A, MACAdv[A, Tinnc]=Pr[W=1] = negl(x), where W is the output of the following security game: messages to be signal
an, Verity) satisfies existential unforgeability against chosen message attacks (EUF-CMA) if for all efficien
Adversary adversary - dollerger As usual, a denotes the length of the MAC secret
me M . .

Let $m_1,...,m_{\Omega}$ be the signing queries the adversary submits to the duillenger, and let $t_i \in$ Sign(k,m;) be the challenger's responses. Then, ω = 1 if and only if :

$$
V_{\text{early}}(k, m^*, t^*) = 1
$$
 and $(m^*, t^*) \notin \{(m_1, t_1), ..., (m_{\emptyset}, t_{\emptyset})\}$

MAC seanity notion says that adversary cannot produce a <u>new</u> tag on <u>any</u> message even if it gets to obtain tags on messages of its choosing .

First, we show that we can directly construct ^a MAC from any PRE.

 $\frac{\text{MACs from PRFs: let } F: K * m \rightarrow T \text{ be a } PRF.}{\text{Sign}(k,m): \text{output } t \leq F}$ We construct a MAC Timac over (κ, m, τ) as follows: $Sign(k,m):$ output $t \in F(k,m)$ $\mathsf{Verify}\left(k,m,\pm\right)$: output 1 if \pm = $\mathsf{F}(k,m)$ and 0 otherwise

Theorem. If F is a secure PRF with a sufficiently large range, then Than defined above is a secure MAC. Specifically, for every efficient MAC adversary A, there exists an efficient PRE adversary ^B such that $MACAds[A, Tmac] \leq PRFAds[B, F] + \frac{1}{|T|}.$

MACAdv[A, Tinac] = PRFAdv[B, F] + Ff].
Intuition for proof : 1. Output of PRF is computationally indistinguishable from that of a forely random function. 2. If we replace the PRF with a truly random function, adversary wins the MAC game only if it correctly predicts the random function at a new point. Success probability is then exactly 171.

Implication: Any PRF with large output space can be used as a MAC. \rightarrow AES has 128-bit output space, so can be used as a MAC Drawback: Domain of AES is 128-bits, so can only sign 128-bit (16-byte) messages

How do we sign longer messages ? We will look at two types of constructions : 1. Constructing a large-domain PRF from a small-domain PRF (i.e., AES) 2. Hash-based constructions

So far, we have focused on constructing a large-domain PRF from a small-domain PRF in order to construct a MAC on long messages

 \mapsto Alternative approach: "compress the message itself (e.g., "hash the message) and MAC the compressed representation

Still require <u>unforgeability</u>: two messages should not hash to the same value [otherwise trivial attack: if $H(m_1)$: $H(m_2)$, then MAC on m_1 is also MAC on m_2

intuitive: it hash value is shorter than messages, collisions <u>always</u> exist - so we can only require that they are hard to find

<u>Definition</u> A hash function $H : M \rightarrow T$ is collision-resistant if for efficient adversaries A, $CHFAdv[R,H] = Pr[Im, m_1) \leftarrow A : H(m_2) = H(m_1) \right] = neg.$

As stated, definition is problematic: if $|M| > 1T$), then then always exists a collision m_0^* , m_t^* so consider the adversary that has m_b^* , m_l^* hard coded and outputs m_b^* , m_l^*

be Thus, some adversary always exists (even if we may not be able to write it down explicitly)

- ر
چا Formally, we model the hash function as being parameterized by an additional parameter leg., a "system parameter" or ^a "key") so adversary cannot output ^a hard-coded collision
- ↳ In practice , we have a concrete function (e. g., SHA-256) that does not include security or system parameters we advertery always exists (even it we may not be able to write it down explicitly
it and the hash function as being parameterized by an additional parameter (e.g.,
itie, we have a concrete function (e.g., SHA-256) that do to believed to be hard to find a collision even therefor there are infinitely-many (SHA-256 can take inquits of arbitrary length)

MAC from CRHFs: Suppose we have the following

that has me, me

L Thus, son

L Thus, son

L Thus, son

L The grown

L The grown

MAC from CRHFs:

- A MAC

- A collision A MAC (Sign, Verify) with key-space K, message space Mo and tog space T rom CRHFs: Suppore we have the tollowing
- A MAC (Sign,Verify) with key-space K, message space Mo and tog space T $\qquad \qquad \left[\begin{matrix} e_{31} & M_o = \left\{ \rho_i \right\}^2 \ m_i = \left\{ \rho_i \right\}^2 \end{matrix}\right]$ A collision-resistant hosh function $H: M_1 \rightarrow M_0$ Define $S'(k,m) = S(k,H(m))$ and ^v'Ck , ^m , t) ⁼ V(k, H(m), t)

V (k, m, t) = V (k, H (m), t)
Theorem. Suppose Then = (Sign, Verify) is a secure MAC and H is a CRHF. Then, Timpc is a secure MAC. Specifically, for every efficient adversary A, there exist efficient adversaries Bo and B, such that $MACAA(1, Time] \leq MACAAC[8, Time] + CHFAA(8, H)$ MACAde [A, Triac] \leq MACAde [B., Triac] + CRHFAdu [B., H]
Proof Idea. Suppose A manages to produce a valid forgery t on a message m. Ther, it must be the case that

 $-$ t is a valid MAC on $H(m)$ under T_{MMC}

- If A queries the signing oracle on $m' \neq m$ where $H(m') = H(m)$, then A breaks collision-resistance of H - If ^A never queries signing oracle on m'where H(m') ⁼ H(m), then it has never seem a MAC on H(m) under Timac. Thus, A breaks security of Timac.

[See Borch-Shoup for formal argument - very similar to above: just introduce event for collision ocurring vs. not ocurring]