
eintegrity : Confidentiality alone not sufficient
,

also need integrity.

Otherwise adversary can tamper with the message

Le.g ,

"

Send $100 to Bob" -> "Send $100 to Eve")

In some cases (e.g.,
software patches) , integrity more important than confidentiality

Edea : Append a "tag" (also called a "signature") to the message to prove integrity /property we want is tags should be hard to forge)
his tolerates a single error

servation: The tag should be computed using a keyed- function (better error-correcting codes can do much* better)
↳ Example of keyless integrity check : CRC (cyclic redundancy check) I simple example is to set tag to be the parity]

↳ this was used in SSH v (1995) for data integrity ! Fixed in SSHV2 (1996)

↳ also used in WEP 1802. 11b) protocol for integrity
- also booken!

birm: Iftheresnokey aonecan computet!Adversarcanamterwithmessageand a
computethe me g e

algorithms TMA)= (Sign , Verify) :

Sign : K xMt T

Verify
: 1 x MxT - 50 , 13 3 Must be efficiently - computable

Errectness : YKEK
,

FmEM :

Pr[Verify (k ,
m

, Sign(k,m)) = 1] = I

4
Sign can be a monized algorithm

Emisecurity
:

Intuitively, adversary should not be able to compute a tag on any message without knowledge of the key
↳ Moreover

,
since adversary might be able to see tays on existing messages (e.g., signed software

updates) ,
it should not help towards creating a new MAC

adversary gets to choose

messages to be signed
--

Definition . A MAC TMAC (Sign, Verify) satisfies existential unforgeability against chosen message attacks (EUF-CMA) if for all efficient

adversaries A
,

MACAdv[A, HmAc] = PrIW=1] =

neg1(x) ,
where W is the output of the following security game

:

adversary challener As usual
,
i denotes the length of the MAC secret key-

Se.g., log IR) =

poly (x))Tim"l Note : the key can also be sampled by a special keyben

- - algorithm (for simplicity , we just define it to be

(m+, t*) uniformly random)

Let m
,, MQ be the signing queries the adversary submits to the challenger, and let ti - Sign/k ,

mil be the challenger's

responses. Then
,

W= 1 if and only if :

Verify (k , m+, t
*) = 1 and (m+

,
+

*) 4 ((m
, t1)

.
. .

.,
(ma

,
tal3

MAC security notion says that adversary cannot produce a new tag on any message even if it gets to obtain tags on messages of its

choosing .

First
,

we show that we can directly construct a MAC from any PRE.

#from PRES : Let F : K Y M + T be a PRE
.

We construct a MAC TMAC over (1
,
M

, T) as follows :

Sign (k ,
m) : Output t - I (k

, m)

Verify(k ,
m

,
t) : output 1 if + = F(k

, m) and O otherwise

ovem . If I is a secure PRE with a sufficiently large range ,
then TMAC defined above is a secure MAC. Specifically,

for
every

efficient MAC adversary A
, there exists an efficient PRE adversary B such that

MACAdvIA
,
TMAc] <PREAdvTB

,
F] +1

.

#tionfor proof :

1. Output of PRF is computationally indistinguishable from that of a truly random function
.

2 .
If we replace the PRF with a truly random function

, adversary wins the MAC
game only if it

correctly predicts the random function at a new point. Success probability is then exactly 1
.

Iication : Any PRF with large output space can be used as a MAC.

↳ AES has 128-bit output space,
so can be used as a MAC

Crowback : Domain of AES is 128-bits
,

so can only sign 128-bit (16-byte) messages

How do we sign longer messages ? We will look at two types of constructions :

1 . Constructing a large-domain PRI from a small-domain PRE (i. e.,
AES)

2. Hash-based constructions

So far
,

we have focused on constructing a large-domain PRI from a small-domain PRF in order to construct a MAC

on long messages
↳ Alternative approach : "compress" the message itself (e.g:

"hash" the message) and MAC the compressed representation

still require meability : two messages should not hash to the same value otherwise trivial attack : if H(mi) = H(m2)
,

them

MAC on m , is also MAC on M2]

↳ intuitive : if hash value is shorter than messages,
collisions aways exist -

so we can only require that they are

hard to find

Refinition
.

A hash function H : Mt T is collision-resistant if for efficient adversaries A
,

CRHFAdvIA
,4) = Pr[(mo

,
m
!) - A : H(mo) = H(m .)] =

negl.

As stated, definition is problematic : if IMKIT1 ,
then there always exists a collision mot

,
mot so consider the adversary

that has mo , ot hard coded and outputs mot , mi

↳
Thus, some adversary ways exists leven if we may not be able to write it down explicitly)

↳
Formally ,

we model the hash function as being parameterized by an additional parameter
le.g., a "system parameter" or

a "key") so adversary cannot output a hard-coded collision

↳
In practice ,

we have a concrete function (e
.g., SHA-256) that does not include security or system parameters

↳ believed to be hard to find a collision even though there are it- many (SHA-256 can take imports
of arbitrary length)

-from CRHFs : Suppose we have the following
- A MAC (Sign , Verify) with key space Id

, message space Mo and tag space T /eg-Mosai I
- A collision-resistant hash function H : M

,
-> Mo

Define S'(k ,m) = S(k , H(m)) and

v'Ck
,

m
,
t) = V(k

,
H(m)

, t)

#rem . Suppose TMAC : (Sign, Verify) is a secure MAC and H is a CRHF
.

Then
,

TMAC is a secure MAC . Specifically,

for every efficient adversary A
,

there exist efficient adversaries Bo and B
,

such that

MACAdrIA
,

TMAc] < MACAdrIBo
,
TMAc] +CRHFAdr[B, Fl]

↳Idea. Suppose A manages to produce a valid forgery t on a message m
. Ther

,
it must be the case that

- t is a valid MAC on H(m) under #MAC

- If A queries the signing oracle on i'm where H(m') = H(m)
,

then A breaks collision-resistance of H
-

If A never queries signing oracle on m'where H(m') = H(m)
,

then it has never seem a MAC on H(m) under

TMAC .
Thus

,
A breaks security of TMAC

.

[See Borch-Shoup for formal argument -

very
similar to above : just introduce event for collision occurring vs . not occurring)

