
Constructing CRHES :

Many cryptographic hash functions (e.g.,
MD5

,
SHA-1

,
SHA-256) follow the Merkle-Damgard paradigm

: Start from hash function on short

messages and use it to build a collision-resistant hash function on a long message :

1. Split message into blocks

2. Iteratively apply menfunction (hash function on short inputs) to message
blocks

I ... Welpad ↳ :

compression function

↳ ↳ 1 to
, ..., te : chaining variables

- padding introduced so last block is multiple of blockT - outputto= IV h tz I->
-

->
- ↳

Size

must also include an encoding of the message

Hash functions are deterministic so IV is a fixed string length : typically of the form 100 ... 011(s)
-

defined in the specification) - can be taken to be all-zeroes string ,
where (S) is a Enelength binary representation

but usually set to a custom value in constructions of message length in blocks

Recall : 100 ... 0 padding was used in the

ANSI standard

if not enough space to include the length, then

for SHA-236 :
extra block is added (similar to CBC encryption)

X = 30, 13256 = y
#

rem . Suppose h : xxy - X be a compression function. Let H :y -> X be the Merkle-Damgard hash function

constructed from h
.

Then
,

if his collision-resistant
,
I is also collision-resistant

.

Rof. Suppose we have a collision-finding algorithm A for H.
We use A to build a collision-finding algorithm for h:

1
. Run A to obtain a collision M and M'(H(M) = H(MY and MFM')

.

2
.

Let M= m
, M2-- - Me and M'= mim2- : mo be the blocks of M and M

, respectively.
Let to,t.....,

to and

tits---to be the corresponding chaining variables
.

3
. Since H(M)= H(M)

,
it must be the case that

H(M) = h(tn -1
,
mu) = h(tr - 1 ,

mi) = H(a))

If either ta-Ftv or Mutmi
,

then we have a collision for h.

Otherwise
,

Mu= m and turl=tr
.

Since Mu and my include an encoding of the length of M and M
,

it must

be the case that U
= V

.

Now
,

consider the second-to-last block in the construction (with output tu-s= tu-1) :

tur= hIturz
,

Muri) = h(tiz
,

Ma-1]= ta-1

Either we have a collision or turz=turz and May
= ma-

. Repeat down the chain until we have collision or

we have concluded that mi=m
: for all;

,
and so M=M

,
which is a contradiction

.

Nte:

Above constructing
is sequential . Easy to adapt construction (using a tree) to obtain a parallelizable construction .

Sufficient now to construct aenfunction
.

Typical approach is to use a block cipher.

-Meyer : Let F : RxX+X be a block cipher.
The Davies - Meyer compression function h : KxX+ X is then

tex h(k ,
x) = = F(k ,x) X

I-> Many other variants also possible : h(k
,
x) = F(k, x) ⑰ k * X

Jused in Whirlpool hash family]
Need to be careful with design !

- h(k
,x)

= F(k ,
x) is not collision-resistant : h(k ,

x) = h(k
,

F (k ,
F(k

,
x)))

- h(k ,x) = F(k
,
x) ⑦ K is not collision-resistant : h(k, x)

= h(k
,

F
-

(k
,

F(k
, x) & k (i)

#m.
If we model F as an ideal block cipher (i.e

,
a truly random permutation for every choice of key), then Davies- Meyer is

collision-resistant.

birthday attack run-time : -280

~ attack ran in time 1264 (100
,
000

Faster)
&lusion : Block cipher

+ Davies- Meyer
+ Merkle-Damgard-> CRHFs January,2020 : chosen-prefix

collision in -263.4 time !
-

Examples: SHA-1 : SHACAL-1 block cipher with Davies- Meyer
+ Merkle-Damgard <

no longer secure [first collision found in 2017 :)

SHA-256
: SHACAL-2 block cipher with Davies - Meyer

+ Merkle-Damgard -

SHA-1 extensively used leg, git, sun
,

software updates,
PGP/6PC signatures,

Why not use AES ? certificates) -> attacks show need

- Block size too small ! AES outputs are 128-bits, not 256 bits (so birthday attack finds collision in 244 time) to transition to

SHA-2 or SHA-3
- Short keys means small number of message bits processed per iteration

.

-

Typically ,
block cipher designed to be fast when using same key to encrypt many messages

↳ In Merkle-Damgard , Arent keys are used
, so alternate design preferred (AES key schedule is eve)

Recently
:

SHA-3 family of hash functions standardized (2015)
↳ Relies on different underlying structure ("sponge" function)
↳> Both SHA-2 and SHA-3 are believed to be secure /most systems use SHA-2 - typically much faster)

~ or even better
,
a large-domain PRI

Back to building a secure MAC from a CRHF-can we do it more kitty than using CRHF+ small-domain MAC ?

↳ Main difficulty seems to be that CRHFs are less but MACs are d

Idea: include the key as part of the hasted input

By itself
,

collision-resistance does not provide any "randomness" guarantees on the output
↳ For instance ,

if It is collision-resistant
,

then H'(m) = moll ... /mollH(m) is also collision-resistant even though H' also

teaks the first 18 bits/blocks of m

↳> Constructing a PRF/MAC from a hash function will require more than just collision resistance

-xion1
: Model hash function as an "ideal hash function" that behaves like a fixed random function

smodeling mistic called the random oracle model-will encounter later in this course)
-

or 2 : Start with a concrete construction of a CRHF (e.g ., Merkle-Damgard or the sponge construction)
and reason about its properties

↳ We will take this approach

How long does the output of a CRHI have to be ?

Byattack on CRHFs
· Suppose we have a hash function H : 90

,
13" - 30 , 13.

.

How might we find a collision in 2) (without

knowing anything more about H)

ach1
:

Compute H(1)
,

H(2), . .

.,
H(2 + 1)

~

size of hash output space
↳

By Pigeonhole Principle, there must be at least are collision -runs in time 0 (2)

-proach 2 : Sample M: So, 13" and compute H(mi)
. Repeat until collision is found.

How many samples needed to find a collision?

-

(Birthday Paradox)
. Take

any
set S where IS) = u

. Suppose r
.. ...,
re*S . Then

,

- e)
Pr[zitj : r = j)= 1 - e 2n

Roof. Pr[itj : r = rj]
=

1- Pr[Vitj : riFrj]
=1- Pr[+Er, 3) · Pr[rs 4 [r,

r
,3] - Pr[re 4 [re- , ..., ,3]

=1-
dominant term when

=

1 - (1)
- automatically holds for X-1 ~ 1x 1

2

I I- leyh since ItX= et for all xe1 (ex = 1 + x + =+ + ...)
- I ,

en

= 1-- =

1 - e positive for all x > 0

-

(l
2n

=I-e
number of people in a room

I

when K-1
. 25

,
PrIcollision] = Pr[itj : ri = vj] > I

. [Forbirthdays ,
1025553 = 23] to a common birthday

↳>
Birthdays not uniformly distributed ,

but this only eases collision probability .

[Try proving this !]

For hash functions with range 90,
13?

, we can use a birthday attack to find collisions in time dat = 21 can

evendoit
witthe

↳ For 128-bit security (e.g .,
248)

, we need the output to be 256-bits (hence S236)
↳ Quantum collision-finding can be done in 243 Ccube not attack)

, though requires more space [via Floyd's
He findinget I

