Constructing CRHES :

Many cryptographic hash functions (e.g., MDS, SHA-1, SHA-256) *follow t*he Merkle-Damgard paradigm: Start from hash function on <u>short</u> messages and use it to build a collision-resistant hash function on a long message :

1. Split message into blocks

2. Split message into blocks
Iteratively apply <u>compression function</u> (hash-function on short inputs) to message blocks

must also include an encoding of the message Hash functions are <u>deterministic</u>, so IV is a fixed string $length:$ typically of the form $|100\cdots0|$ (s) $(\text{defined in the specification}) - \text{can be taken to be all zeroes string}$ where $\langle s \rangle$ is a fixed-knoth binary representation but usually set to a custom value in constructions and the state of message length in blocks Recall: 100 ... 0 padding was used in the

ANSI standard

if not enough space to include the length, then extra block is <u>added</u> (similar to CBC encryption) X = {0,1}²⁵⁶ = y

 $\frac{X = \{0,1\}^{256} = Y}{X \times Y \times Y \times Y}$ be a compression function. Let H: y^{sl} \rightarrow X be the Merkle-Damgerd hash function constructed from h. Then , if his collision-resistant, I is also collision-resistant. constructed from h. Them, if h is collision-resistant, H is also collision-resistant.
<u>Proof</u>. Suppose we have a collision-finding algorithm A for H. We use A to build a collision-finding algorithm for h:

- 1. Run A to obtain a collision M and M' (H(M)= H(M) and M \neq M').
- 2. Let M = $m_1m_2\cdots m_m$ and M' = $m'_1m'_2\cdots m'_V$ be the blocks of M and M' , respectively. Let to,t.,...,tu and tits---to be the corresponding chaining variables.
- 3. Since $H(M)$ = $H(M')$, it must be the case that

$$
H(M) = h(t_{u-1}, m_u) = h(t_{v-1}, m_u') = H(M)
$$

If either tax f true or Mutmi, then we have a collision for λ .

Otherwise, m_{u} = m_{v} and two = t_{u-1} . Since Mu and m_{v} include an excoding of the length of M and M, it must be the case that u =V. Now, consider the second-to-last block in the construction (with output tu-1 = t'u-1): $t_{\mu - 1} = h(t_{\mu - 2}, m_{\mu - 1}) = h(t'_{\mu - 2}, m'_{\mu - 1}) = t'_{\mu - 1}$

Either we have a collision or tu-z = tu-z and m_{u-1} = m_{u-1} . Repeat down the chain until we have collision or we have concluded that $m_i=m'_i$ for all i , and so $M=M'$, which is a contradiction.

Note: Above constructing is sequential. Easy to adapt construction (using a tree) to obtain a parallelizable construction.

Sufficient now to construct a <u>compression function</u>.
a block cipber.

Typical approach is to use a block cipher.

 Δ avies-Meyer: Let F: Rx $X\to X$ be a block cipher. The Davies-Meyer compression function $h: K*\times\to X$ is then $X \rightarrow X$ be a block cipler. The Davies-Meye

miek
 $t:=\begin{cases} k(x, x):=\\ k(x, y):=\\ k(x,$ $h(k, x) = F(k, x) \oplus x$ $t_i \in \mathbb{X}$ F \Rightarrow $\begin{cases} \text{h}(k, \chi) := F(k, \chi) \oplus \chi \\ \text{h}(k, \chi) = \text{h}(k, \chi) \end{cases}$ also possible : $h(k, \chi)$ x) ⁼ F(k,x) ^⑰ ^k * ^X [used in Whirlpool hash family] Need to be careful with design! $= h(k,x) = F(k,x)$ is <u>not</u> collision-resistant: $h(k,x) = h(k, F^{-1}(k', F(k,x)))$ + h(k,x) = F(k,x) is <u>not</u> collision-resistant: h(k,x)= h(k', F''(k',F(k,x)|/
- h(k,x) = F(k,x) ⊕ k is <u>not</u> collision-resistant: h(k,x)= h(k',F''(k',F(k,x)⊕k⊕k')) Theres. If we model F as an ideal block cipher (i.e., a truly random permutation for every choice of key), then Davies-Meyer is collision-resistant. $\begin{array}{r} \rightarrow$ birthday attack run-time : $~^{2}8^{20}$
attack ran in time $~^{2}2^{64}$ (00,
January, 2020 : chosen-prefix 000Faster) collision-resistant.
<u>Conclusion</u>: Block cipher +
-Davies-Meyer ⁺ Merkle-Damgard-> CRHFs January, 2020 : chosen-prefix

2020 : collision in 2034 fine!

10 longer secure [first collision found in 2017!] Examples: SHA-1 : SHACAL-1 block cipher with Davies-Meyer ⁺ Merkle-Damgard < SHA-256: SHACAL-2 block cipher with Davies-Meyer + Merkle-Damgard - SHA-1 extensively used (eg., git, sun, Why not use AES?
- Block size too small! AES outputs are 128 bits, not 256 bits (so birthdoy attack finds collision in 2⁶⁴ time) to transition to
- Slock size too small! AES outputs are 128 bits, not 256 bits (so birthdo Short keys means small number of message bits processed per iteration . - Typically, block cipher designed to be fast when using same key to encrypt many messages to In Merkle-Damgard, different keys are used , so alternate design preferred (AES key schedule is experience) Recently : SHA-3 family of hash functions standardized (2015) \rightarrow Relies on different underlying structure ("sponge" function) LS Both SHA-2 and SHA-3 are believed to be secure (most systems use SHA-2 - typically much faster) or even better, a large-domain PRF Back to building a secure MAC from a CRHF - can we do it more directly than using CRHF + small-domain MAC ? \mapsto Main difficulty seems to be that CRHFs are keyless but MACs are keyed Idea: include the key as part of the hasted input By itself, collision-resistance does not provide any "randomness" guarantees on the output \mapsto For instance, if H is collision-resistant, then $H'(m)$ = m_o ll…llm $_1$ m $|_m$ ll $H(m)$ is also collision-resistant even though H' also leaks the first 10 bits/blocks of m \rightarrow Constructing a PRF/MAC from a hash function will reguire more than just collision resi*st*ance - Option 1: Model hash function as an "ideal hosh function" that behaves like a fixed traly random function (modeling <u>leuristic</u> called the random oracle model - will encounter later in this course) -Option 2: Start with a concrete construction of a CRHF (e.g., Merkle-Damgard or the openage construction) and reason about its properties \mapsto We will take this approach

How long does the output of a CRHI have to be ?

How long does the content of a CRHF have to be?

\nBr+hday attack on CRHFs. Suppose we have a host function H:
$$
\{0,1\}^6
$$
 - $\{0,1\}^6$. How might we find a collision in H (with a known knowledge, any thing more about H)

\nAppends 1: Compare H(1), H(2), ..., H(2² + 1)

\nAreach 1: Compare H(1), H(2), ..., H(2² + 1)

\nSee of hash output space

\nApproach 2: Sample m; & $\{0,1\}$ and compute H(m). Repeat until collision is found.

\nHow many samples reveal the find a collision?

Theorem (Bichody Paradox). Take any set S where
$$
|s| = n
$$
, Suppose $r_1, ..., r_\ell \stackrel{\text{R}}{\leftarrow} S$. Then,

$$
P_r\left[\exists i \neq j : r_i = r_j\right] \geq 1 - e^{-\frac{\ell(\ell-1)}{2n}}
$$

Proof.

\n
$$
Pr[2: f] : n = r_{j}] = 1 - Pr\{Y_{i}f_{j}: n_{i}f_{j}: n_{i}f_{j}\}
$$
\n
$$
= 1 - Pr\{Y_{i}f_{j}: n_{i}f_{j}: n_{i}f_{j}\}
$$
\n
$$
= 1 - \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \frac{n-2+1}{n}
$$
\n
$$
= 1 - \frac{1}{n} \cdot \frac{n-2}{n} \cdot \frac{n-2+1}{n}
$$
\n
$$
= 1 - \frac{1}{n} \cdot \frac{n-2}{n} \cdot \frac{n-2+1}{n}
$$
\n
$$
= 1 - \frac{1}{n} \cdot \frac{n-2}{n} \cdot \frac{n-2+1}{n}
$$
\n
$$
= 1 - \frac{1}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \frac{n-2+1}{n}
$$
\n
$$
= 1 - \frac{1}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \frac{n-1}{n} \cdot \frac{n-1}{n}
$$
\n
$$
= 1 - \frac{1}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \frac{n-1}{n} \cdot \frac{n
$$

number of people in a room
When
$$
l \ge 1.2\sqrt{n}
$$
, Pr[collision] = Pr[$\exists i \ne j$: $r_i = r_j$] $\ge \frac{1}{2}$. [For birthdays, 1.2 $\sqrt{345} \approx 23$]

 \mapsto Birthdays not aniformly distributed , but this only <u>increases</u> collision probability.

$$
\boxed{\text{Try } \text{period } \text{ this } :}
$$

For hash functions with range $\{0,1\}$, we can use a birthday attack to find collisions in time $\sqrt{a^{2}} = g^{2/2}$ can can even do it with \mapsto For 128-bit security (e.g., x^{pT}), we need the output to be 256-bits (hence SHA-256) \mapsto Quantum collision-finding can be done in $a^{9/3}$ (cube not attack), though requires more space via Floyd's cycle finding
alquithm