
CS 346: Introduction to Cryptography

Cryptographic Definitions
Instructor: David Wu

In this note, we will recall the main definitions of the cryptographic notions encountered in this course.

1 Cryptographic Building Blocks
Pseudorandom generators (PRGs). Let 𝐺 : {0, 1}𝜆 → {0, 1}𝑛 be an efficiently-computable function where 𝑛 > 𝜆.
We define the following PRG security experiments:

Experiment 𝑏 = 0:
1. The challenger samples 𝑠 r← {0, 1}𝜆 and sends 𝑡 ← 𝐺 (𝑠) to A.
2. The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

Experiment 𝑏 = 1:
1. The challenger samples 𝑡 r← {0, 1}𝑛 and gives 𝑡 to A.
2. The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

We say 𝐺 is a secure PRG if for all efficient adversaries A,

PRGAdv[A] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

Pseudorandom functions (PRFs). Let 𝐹 : K × X → Y be an efficiently-computable function with a key space K ,
domain X, and range Y (technically, each of these sets is a function of the security parameter 𝜆). We now define the
following PRF security experiments:

Experiment 𝑏 = 0:
1. The challenger samples 𝑘 r← K .
2. The adversary can now adaptively make queries to the challenger.

In each query, the adversary chooses an input 𝑥 ∈ X, and the
challenger replies with 𝐹 (𝑘, 𝑥) .

3. The adversary outputs a bit 𝑏′ ∈ {0, 1}.

Experiment 𝑏 = 1:
1. The challenger samples a function 𝑓

r← Funs[X,Y].
2. The adversary can now adaptively make queries to the challenger.

In each query, the adversary chooses an input 𝑥 ∈ X, and the
challenger replies with 𝑓 (𝑥) .

3. The adversary outputs a bit 𝑏′ ∈ {0, 1}.

We say that 𝐹 is a secure PRF if for all efficient adversaries A,

PRFAdv[A] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

In the above definition, Funs[X,Y] denotes the set of all functions 𝑓 : X → Y.

Pseudorandom permutations (PRPs). Let 𝐹 : K × X → X be an efficiently-computable function with a key
space K and domain X (technically, each of these sets is a function of the security parameter 𝜆). We say that 𝐹 is a
pseudorandom permutation (PRP) if the following properties hold:

• For every key 𝑘 ∈ K , the function 𝐹 (𝑘, ·) is a permutation on X.

• There exists an efficiently-computable function 𝐹 −1 : K × X → X such that for all 𝑘 ∈ K and all 𝑥 ∈ X,

𝐹 −1 (𝑘, 𝐹 (𝑘, 𝑥)) = 𝑥 .

For security, we define the following PRP security experiments:

Experiment 𝑏 = 0:
1. The challenger samples 𝑘 r← K .
2. The adversary can now adaptively make queries to the challenger.

In each query, the adversary chooses an input 𝑥 ∈ X, and the
challenger replies with 𝐹 (𝑘, 𝑥) .

3. The adversary outputs a bit 𝑏′ ∈ {0, 1}.

Experiment 𝑏 = 1:
1. The challenger samples a function 𝑓

r← Perm[X].
2. The adversary can now adaptively make queries to the challenger.

In each query, the adversary chooses an input 𝑥 ∈ X, and the
challenger replies with 𝑓 (𝑥) .

3. The adversary outputs a bit 𝑏′ ∈ {0, 1}.

1

We say that 𝐹 is a secure PRP if for all efficient adversaries A,

PRPAdv[A] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

In the above definition, Perm[X] denotes the set of all permutations 𝑓 : X → X.

Collision-resistant hash functions (CRHFs). Let 𝐻 : {0, 1}𝑛 → {0, 1}𝑚 where𝑚 < 𝑛 (for full formality, the
hash function would be indexed by a security parameter 𝜆 and 𝑛,𝑚 are polynomials in 𝜆). We say that 𝐻 is a
collision-resistant hash function if for all efficient (uniform) adversaries A (that takes the security parameter 𝜆 as
input),

CRHFAdv[A] = Pr[(𝑥,𝑦) ← A : 𝐻 (𝑥) = 𝐻 (𝑦) and 𝑥 ≠ 𝑦] = negl(𝜆).

2 Symmetric Encryption
A symmetric encryption scheme (also called a cipher) is defined over a key space K , a message spaceM, and a
ciphertext space C (technically, each of these sets is a function of the security parameter 𝜆) and consists of two
efficient algorithms:

• Encrypt(𝑘,𝑚) → ct: On input a key 𝑘 ∈ K and a message 𝑚 ∈ M, the encryption algorithm outputs a
ciphertext ct.

• Decrypt(𝑘, ct) →𝑚/⊥: On input a key 𝑘 ∈ K and a ciphertext ct ∈ C, the decryption algorithm either outputs
a message𝑚 ∈ M or a special symbol ⊥ (to indicate a decryption failure).

Correctness. The encryption scheme is correct if for all keys 𝑘 ∈ K and all messages𝑚 ∈ M,

Pr[Decrypt(𝑘, Encrypt(𝑘,𝑚)) =𝑚] = 1.

Perfect secrecy. The encryption scheme satisfies perfect secrecy if for all pairs of messages𝑚0,𝑚1 ∈ M and all
ciphertext ct ∈ C,

Pr[𝑘 r← K : Encrypt(𝑘,𝑚0) = 𝑐] = Pr[𝑘 r← K : Encrypt(𝑘,𝑚1) = 𝑐] .

Semantic security. We start by defining the semantic security experiment:
Experiment 𝑏 = 0:
1. The challenger samples a key 𝑘 r← K .
2. The adversary A sends messages𝑚0,𝑚1 ∈ M to the challenger.
3. The challenger replies with Encrypt(𝑘,𝑚0) .
4. The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

Experiment 𝑏 = 1:
1. The challenger samples a key 𝑘 r← K .
2. The adversary A sends messages𝑚0,𝑚1 ∈ M to the challenger.
3. The challenger replies with Encrypt(𝑘,𝑚1) .
4. The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

We say the encryption scheme satisfies semantic security if for all efficient adversaries A,

SSAdv[A] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

Note that when the message spaceM contains variable-length messages, then each of the adversary’s encryption
queries (𝑚0,𝑚1) in the semantic security experiment must additionally satisfy |𝑚0 | = |𝑚1 |.

Security against chosen-plaintext attacks (CPA-security). We start by defining the CPA-security experiment:
Experiment 𝑏 = 0:
• The challenger samples a key 𝑘 r← K .
• The adversary can now make queries to the challenger:
– Encryption query: The adversary sends𝑚0,𝑚1 ∈ M to the

challenger. The challenger replies with Encrypt(𝑘,𝑚0) .
• The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

Experiment 𝑏 = 1:
• The challenger samples a key 𝑘 r← K .
• The adversary can now make queries to the challenger:
– Encryption query: The adversary sends𝑚0,𝑚1 ∈ M to the

challenger. The challenger replies with Encrypt(𝑘,𝑚1) .
• The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

2

We say the encryption scheme satisfies security against chosen-plaintext attacks (CPA-security) if for all efficient
adversaries A,

CPAAdv[A] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

Note that when the message spaceM contains variable-length messages, then each of the adversary’s encryption
queries (𝑚0,𝑚1) in the CPA-security experiment must additionally satisfy |𝑚0 | = |𝑚1 |.

Security against chosen-ciphertext attacks (CCA-security). We start by defining the CCA-security experiment:

Experiment 𝑏 = 0:
• The challenger samples a key 𝑘 r← K .
• The adversary can now make queries to the challenger:
– Encryption query: The adversary sends𝑚0,𝑚1 ∈ M to the

challenger. The challenger replies with Encrypt(𝑘,𝑚0) .
– Decryption query: The adversary sends a ciphertext ct ∈ C to

the challenger. The challenger replies with Decrypt(𝑘, ct) .
• The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

Experiment 𝑏 = 1:
• The challenger samples a key 𝑘 r← K .
• The adversary can now make queries to the challenger:
– Encryption query: The adversary sends𝑚0,𝑚1 ∈ M to the

challenger. The challenger replies with Encrypt(𝑘,𝑚1) .
– Decryption query: The adversary sends a ciphertext ct ∈ C to

the challenger. The challenger replies with Decrypt(𝑘, ct) .
• The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

We say an adversaryA is admissible for the CCA-security game if it does not issue a decryption query on a ciphertext
ct it previously received from the challenger (in response to an encryption query). We say the encryption scheme
satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient and admissible adversaries A,

CCAAdv[A] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

Note that when the message spaceM contains variable-length messages, then each of the adversary’s encryption
queries (𝑚0,𝑚1) in the CCA-security experiment must additionally satisfy |𝑚0 | = |𝑚1 |.

Ciphertext integrity. We start by defining the ciphertext integrity experiment:

Ciphertext integrity experiment:
• The challenger samples a key 𝑘 r← K .
• The adversary can now make encryption queries to the challenger:
– Encryption query: The adversary sends𝑚 ∈ M to the challenger. The challenger replies with ct← Encrypt(𝑘,𝑚) .

• The adversary A outputs a ciphertext ct∗ ∈ C.

Let ct1, . . . , ct𝑄 ∈ C be the ciphertexts that the challenger gives the adversary in the security game (when responding to
encryption queries). We say an adversaryA is admissible for the existential unforgeability game if ct∗ ∉

{
ct1, . . . , ct𝑄

}
.

We say that the encryption scheme satisfies ciphertext integrity if for all efficient and admissible adversaries A,

Pr[Decrypt(𝑘, ct∗) ≠ ⊥] = negl(𝜆).

Authenticated encryption. We say the encryption scheme is an authenticated encryption if it satisfies CPA-
security and ciphertext integrity.

3 Message Authentication Codes
A message authentication code (MAC) is defined over a key space K , a message space M, and a tag space T
(technically, each of these sets is a function of the security parameter 𝜆) and consists of two efficient algorithms:

• Sign(𝑘,𝑚) → 𝑡 : On input a key 𝑘 ∈ K and a message𝑚 ∈ M, the signing algorithm outputs a tag 𝑡 .

• Verify(𝑘,𝑚, 𝑡) → 0/1: On input a key 𝑘 ∈ K , a message𝑚 ∈ M, and a tag 𝑡 ∈ T , the verification algorithm
outputs a bit 𝑏 ∈ {0, 1} (indicating whether the tag is valid or not).

3

Correctness. The MAC is correct if for all keys 𝑘 ∈ K and all messages𝑚 ∈ M,

Pr[Verify(𝑘,𝑚, Sign(𝑘,𝑚)) = 1] = 1.

Existential unforgeability. We start by defining the existential unforgeability experiment:

Existential unforgeability experiment:
• The challenger samples a key 𝑘 r← K .
• The adversary can now make signing queries to the challenger:
– Signing query: The adversary sends𝑚 ∈ M to the challenger. The challenger replies with 𝑡 ← Sign(𝑘,𝑚) .

• The adversary A outputs a message𝑚∗ ∈ M and tag 𝑡∗ ∈ T.

Let 𝑚1, . . . ,𝑚𝑄 ∈ M be the signing queries the adversary makes and let 𝑡1, . . . , 𝑡𝑄 ∈ T be the respective tags
that the challenger responds with. We say an adversary A is admissible for the existential unforgeability game
if (𝑚∗, 𝑡∗) ∉

{
(𝑚1, 𝑡1), . . . , (𝑚𝑄 , 𝑡𝑄)

}
. We say the MAC satisfies existential unforgeability against chosen-message

attacks if for all efficient and admissible adversaries A,

Pr[Verify(𝑘,𝑚∗, 𝑡∗) = 1] = negl(𝜆).

4 Block Cipher Modes of Operation
We now recall two common ways to use block ciphers to construct CPA-secure encryption schemes.

Countermode. Let 𝐹 : K×{0, 1}𝑛 → {0, 1}𝑛 be a secure PRF. In the following, 𝑘 is the PRF key and𝑚 = (𝑚1, . . . ,𝑚𝑛)
are the blocks of the message (i.e.,𝑚𝑖 ∈ {0, 1}𝑛). In randomized counter-mode encryption, sample IV r← {0, 1}𝑛 , and
the ciphertext is (IV, 𝑐1, . . . , 𝑐𝑛). We view IV as an integer between 0 and 2𝑛 − 1, and perform arithmetic operations
modulo 2𝑛 .

𝐹 (𝑘, ·)

𝑐1

𝑚1

𝐹 (𝑘, ·)

𝑐2

𝑚2

𝐹 (𝑘, ·)

𝑐3

𝑚3

IV IV + 1 IV + 2

· · · · · · · · · · · · 𝐹 (𝑘, ·)

IV + 𝑛 − 1

𝑐𝑛

𝑚𝑛

Figure 1: Counter-mode encryption

4

𝐹 (𝑘, ·)

𝑚1

𝑐1

𝐹 (𝑘, ·)

𝑚2

𝑐2

𝐹 (𝑘, ·)

𝑚3

𝑐3

IV IV + 1 IV + 2

· · · · · · · · · · · · 𝐹 (𝑘, ·)

IV + 𝑛 − 1

𝑚𝑛

𝑐𝑛

Figure 2: Counter-mode decryption

Cipherblock chaining (CBC). Let 𝐹 : K × {0, 1}𝑛 → {0, 1}𝑛 be a block cipher (i.e., a secure PRP). In the following,
𝑘 is the PRP key and𝑚 = (𝑚1, . . . ,𝑚𝑛) are the blocks of the message (i.e.,𝑚𝑖 ∈ {0, 1}𝑛). In CBC encryption, sample
IV r← {0, 1}𝑛 , and the ciphertext is (IV, 𝑐1, . . . , 𝑐𝑛).

𝐹 (𝑘, ·)

𝑚1

𝑐1

𝐹 (𝑘, ·)

𝑚2

𝑐2

𝐹 (𝑘, ·)

𝑚3

𝑐3

IV
𝑐1 𝑐2

· · · · · · 𝐹 (𝑘, ·)

𝑚𝑛

𝑐𝑛

𝑐𝑛−1

Figure 3: CBC encryption

𝐹 −1 (𝑘, ·)

𝑚1

𝑐1

𝐹 −1 (𝑘, ·)

𝑚2

𝑐2

𝐹 −1 (𝑘, ·)

𝑚3

𝑐3

IV
𝑐1 𝑐2

· · · · · · 𝐹 −1 (𝑘, ·)

𝑚𝑛

𝑐𝑛−1

𝑐𝑛

Figure 4: CBC decryption

5 Public-Key Encryption
A public-key encryption scheme is define with respect to a message spaceM and a ciphertext space C (technically,
each of these sets can be a function of the security parameter 𝜆) and consists of three algorithms:

5

• Setup→ (pk, sk): The setup algorithm outputs a public key pk and a secret key sk. (Technically, this algorithm
takes the security parameter 𝜆 as input).

• Encrypt(pk,𝑚) → ct: On input the public key pk and a message𝑚 ∈ M, the encryption algorithm outputs a
ciphertext ct.

• Decrypt(sk, ct) →𝑚: On input a secret key sk and a ciphertext ct, the decryption algorithm either outputs a
message𝑚 ∈ M or a special symbol ⊥ (to indicate a decryption failure).

Correctness. A public-key encryption scheme is correct if for all (pk, sk) output by Setup and all messages𝑚 ∈ M,

Pr[Decrypt(sk, Encrypt(pk,𝑚)) =𝑚] = 1.

Semantic security. The semantic security experiment is defined analogously to the corresponding notion in the
secret-key setting:

Experiment 𝑏 = 0:
1. The challenger samples (pk, sk) ← Setup and gives pk to A.
2. The adversary A sends messages𝑚0,𝑚1 ∈ M to the challenger.
3. The challenger replies with Encrypt(pk,𝑚0) .
4. The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

Experiment 𝑏 = 1:
1. The challenger samples (pk, sk) ← Setup and gives pk to A.
2. The adversary A sends messages𝑚0,𝑚1 ∈ M to the challenger.
3. The challenger replies with Encrypt(pk,𝑚1) .
4. The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

We say the encryption scheme satisfies semantic security if for all efficient adversaries A,

SSAdv[A] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

CCA security. We start by defining the CCA-security experiment for public-key encryption. This is the analog of
the corresponding secret-key notion.

Experiment 𝑏 = 0:
• The challenger samples (pk, sk) ← Setup and gives pk to A.
• The adversary can now issue decryption queries to the challenger:
– Decryption query: The adversary sends a ciphertext ct ∈ C to

the challenger. The challenger replies with Decrypt(sk, ct) .
• The adversary A sends messages𝑚0,𝑚1 ∈ M to the challenger.
• The challenger replies with ct∗ ← Encrypt(pk,𝑚0) .
• The adversary can make more decryption queries to the challenger,
with the restriction that it is not allowed to query on ct∗.
– Decryption query: The adversary sends a ciphertext ct ≠ ct∗ to

the challenger. The challenger replies with Decrypt(sk, ct) .
• The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

Experiment 𝑏 = 1:
• The challenger samples (pk, sk) ← Setup and gives pk to A.
• The adversary can now issue decryption queries to the challenger:
– Decryption query: The adversary sends a ciphertext ct ∈ C to

the challenger. The challenger replies with Decrypt(sk, ct) .
• The adversary A sends messages𝑚0,𝑚1 ∈ M to the challenger.
• The challenger replies with ct∗ ← Encrypt(pk,𝑚1) .
• The adversary can make more decryption queries to the challenger,
with the restriction that it is not allowed to query on ct∗.
– Decryption query: The adversary sends a ciphertext ct ≠ ct∗ to

the challenger. The challenger replies with Decrypt(sk, ct) .
• The adversary A outputs a bit 𝑏′ ∈ {0, 1}.

We say the encryption scheme satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient
adversaries A,

CCAAdv[A] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆).

6 Digital Signatures
A digital signature scheme is defined over a message spaceM and a signature space S (technically, each of these sets
can be a function of the security parameter 𝜆) and consists of three main algorithms:

• Setup → (vk, sk): The setup algorithm outputs a public verification key vk and a secret signing key sk.
(Technically, this algorithm takes the security parameter 𝜆 as input).

• Sign(sk,𝑚) → 𝜎 : On input the signing key sk and a message𝑚 ∈ M, the signing algorithm outputs a signature
𝜎 ∈ S.

6

• Verify(vk,𝑚, ct) → {0, 1}: On input the verification key vk, a message𝑚 ∈ M, and a signature 𝜎 ∈ S, the
verification algorithm outputs a bit 𝑏 ∈ {0, 1} (indicating whether the signature is valid or not).

Correctness. The signature scheme is correct if for all (vk, sk) output by Setup and all messages𝑚 ∈ M,

Pr[Verify(vk,𝑚, Sign(sk,𝑚)) = 1] = 1.

Unforgeability. We start by defining the unforgeability experiment:

Existential unforgeability experiment:
• The challenger samples (vk, sk) ← Setup and gives vk to the adversary.
• The adversary can now make signing queries to the challenger:
– Signing query: The adversary sends𝑚 ∈ M to the challenger. The challenger replies with 𝜎 ← Sign(sk,𝑚) .

• The adversary A outputs a message𝑚∗ ∈ M and signature 𝜎∗ ∈ S.

We say an adversary A is admissible for the signature unforgeability game if the adversary does not make a signing
query on the message𝑚∗. We say the signature scheme satisfies unforgeability if for all efficient and admissible
adversaries A,

Pr[Verify(sk,𝑚∗, 𝜎∗) = 1] = negl(𝜆).

7

	Cryptographic Building Blocks
	Symmetric Encryption
	Message Authentication Codes
	Block Cipher Modes of Operation
	Public-Key Encryption
	Digital Signatures

