CS 346: Introduction to Cryptography

Cryptographic Definitions

Instructor: David Wu

In this note, we will recall the main definitions of the cryptographic notions encountered in this course.

1 Cryptographic Building Blocks

Pseudorandom generators (PRGs). Let $G: \{0, 1\}^{\lambda} \to \{0, 1\}^n$ be an efficiently-computable function where $n > \lambda$. We define the following PRG security experiments:

We say G is a secure PRG if for all efficient adversaries A ,

$$
PRGAdv[\mathcal{A}] = |Pr[b' = 1 | b = 0] - Pr[b' = 1 | b = 1]| = negl(\lambda).
$$

Pseudorandom functions (PRFs). Let $F: K \times X \to Y$ be an efficiently-computable function with a key space K, domain X, and range Y (technically, each of these sets is a function of the security parameter λ). We now define the following PRF security experiments:

We say that F is a secure PRF if for all efficient adversaries \mathcal{A} ,

 $PRFAdv[\mathcal{A}] = |Pr[b' = 1 | b = 0] - Pr[b' = 1 | b = 1]| = negl(\lambda).$

In the above definition, Funs $[X, Y]$ denotes the set of all functions $f: X \to Y$.

Pseudorandom permutations (PRPs). Let $F: K \times X \rightarrow X$ be an efficiently-computable function with a key space K and domain X (technically, each of these sets is a function of the security parameter λ). We say that F is a pseudorandom permutation (PRP) if the following properties hold:

- For every key $k \in \mathcal{K}$, the function $F(k, \cdot)$ is a permutation on X.
- There exists an efficiently-computable function F^{-1} : $\mathcal{K} \times \mathcal{X} \to \mathcal{X}$ such that for all $k \in \mathcal{K}$ and all $x \in \mathcal{X}$,

$$
F^{-1}(k, F(k, x)) = x.
$$

For security, we define the following PRP security experiments:

We say that F is a secure PRP if for all efficient adversaries \mathcal{A} ,

$$
PRPAdv[\mathcal{A}] = |Pr[b' = 1 | b = 0] - Pr[b' = 1 | b = 1]| = negl(\lambda).
$$

In the above definition, Perm[X] denotes the set of all permutations $f: X \to X$.

Collision-resistant hash functions (CRHFs). Let $H: \{0, 1\}^n \to \{0, 1\}^m$ where $m < n$ (for full formality, the hash function would be indexed by a security parameter λ and n, m are polynomials in λ). We say that H is a collision-resistant hash function if for all efficient (uniform) adversaries $\mathcal A$ (that takes the security parameter λ as input),

 $CRHFAdv[\mathcal{A}] = Pr[(x, y) \leftarrow \mathcal{A} : H(x) = H(y) \text{ and } x \neq y] = negl(\lambda).$

2 Symmetric Encryption

A symmetric encryption scheme (also called a cipher) is defined over a key space K , a message space M , and a ciphertext space C (technically, each of these sets is a function of the security parameter λ) and consists of two efficient algorithms:

- Encrypt(k, m) \rightarrow ct: On input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$, the encryption algorithm outputs a ciphertext ct.
- Decrypt(k, ct) \rightarrow m/\perp : On input a key $k \in \mathcal{K}$ and a ciphertext ct $\in C$, the decryption algorithm either outputs a message $m \in M$ or a special symbol \perp (to indicate a decryption failure).

Correctness. The encryption scheme is correct if for all keys $k \in \mathcal{K}$ and all messages $m \in \mathcal{M}$,

$$
Pr[Decrypt(k, Encrypt(k, m)) = m] = 1.
$$

Perfect secrecy. The encryption scheme satisfies perfect secrecy if for all pairs of messages $m_0, m_1 \in M$ and all ciphertext ct \in C,

$$
Pr[k \stackrel{\text{R}}{\leftarrow} \mathcal{K} : \text{Encrypt}(k, m_0) = c] = Pr[k \stackrel{\text{R}}{\leftarrow} \mathcal{K} : \text{Encrypt}(k, m_1) = c].
$$

Semantic security. We start by defining the semantic security experiment:

We say the encryption scheme satisfies semantic security if for all efficient adversaries A ,

 $SSAdv[\mathcal{A}] = |Pr[b' = 1 | b = 0] - Pr[b' = 1 | b = 1]| = negl(\lambda).$

Note that when the message space M contains variable-length messages, then each of the adversary's encryption queries (m_0, m_1) in the semantic security experiment must additionally satisfy $|m_0 | = |m_1|$.

Security against chosen-plaintext attacks (CPA-security). We start by defining the CPA-security experiment:

We say the encryption scheme satisfies security against chosen-plaintext attacks (CPA-security) if for all efficient adversaries A,

$$
CPAAdv[\mathcal{A}] = |Pr[b' = 1 | b = 0] - Pr[b' = 1 | b = 1]| = negl(\lambda).
$$

Note that when the message space M contains *variable-length* messages, then each of the adversary's encryption queries (m_0, m_1) in the CPA-security experiment must additionally satisfy $|m_0 | = |m_1|$.

Security against chosen-ciphertext attacks (CCA-security). We start by defining the CCA-security experiment:

We say an adversary $\mathcal A$ is admissible for the CCA-security game if it does not issue a decryption query on a ciphertext ct it *previously* received from the challenger (in response to an encryption query). We say the encryption scheme satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient and admissible adversaries \mathcal{A} ,

$$
CCAAdv[\mathcal{A}] = |Pr[b' = 1 | b = 0] - Pr[b' = 1 | b = 1]| = negl(\lambda).
$$

Note that when the message space M contains variable-length messages, then each of the adversary's encryption queries (m_0, m_1) in the CCA-security experiment must additionally satisfy $|m_0 | = |m_1|$.

Ciphertext integrity. We start by defining the ciphertext integrity experiment:

Ciphertext integrity experiment:

• The challenger samples a key $k \stackrel{\text{R}}{\leftarrow} \mathcal{K}$.

• The adversary can now make encryption queries to the challenger:

- Encryption query: The adversary sends $m ∈ M$ to the challenger. The challenger replies with ct ← Encrypt(k, m).
- The adversary $\mathcal A$ outputs a ciphertext ct^{*} $\in \mathcal C$.

Let $ct_1, \ldots, ct_0 \in C$ be the ciphertexts that the challenger gives the adversary in the security game (when responding to encryption queries). We say an adversary \cal{A} is admissible for the existential unforgeability game if ct* ∉ $\{$ ct $_1,$ \ldots , ct $_Q\}$. We say that the encryption scheme satisfies ciphertext integrity if for all efficient and admissible adversaries A ,

 $Pr[Decrypt(k, ct^*) \neq \bot] = negl(\lambda).$

Authenticated encryption. We say the encryption scheme is an authenticated encryption if it satisfies CPAsecurity and ciphertext integrity.

3 Message Authentication Codes

A message authentication code (MAC) is defined over a key space K , a message space M, and a tag space $\mathcal T$ (technically, each of these sets is a function of the security parameter λ) and consists of two efficient algorithms:

- Sign(k, m) \rightarrow t: On input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$, the signing algorithm outputs a tag t.
- Verify(k, m, t) \rightarrow 0/1: On input a key $k \in \mathcal{K}$, a message $m \in \mathcal{M}$, and a tag $t \in \mathcal{T}$, the verification algorithm outputs a bit $b \in \{0, 1\}$ (indicating whether the tag is valid or not).

Correctness. The MAC is correct if for all keys $k \in \mathcal{K}$ and all messages $m \in \mathcal{M}$,

 $Pr[Verify(k, m, Sign(k,m)) = 1] = 1.$

Existential unforgeability. We start by defining the existential unforgeability experiment:

Existential unforgeability experiment:

- The challenger samples a key $k \stackrel{\text{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make signing queries to the challenger:
- Signing query: The adversary sends $m \in M$ to the challenger. The challenger replies with $t \leftarrow$ Sign(k, m).
- The adversary $\mathcal A$ outputs a message $m^* \in \mathcal M$ and tag $t^* \in \mathcal T$.

Let $m_1, \ldots, m_Q \in \mathcal{M}$ be the signing queries the adversary makes and let $t_1, \ldots, t_Q \in \mathcal{T}$ be the respective tags that the challenger responds with. We say an adversary $\mathcal A$ is admissible for the existential unforgeability game if $(m^*, t^*) \notin \big\{(m_1, t_1), \ldots, (m_Q, t_Q)\big\}$. We say the MAC satisfies existential unforgeability against chosen-message attacks if for all efficient and admissible adversaries $\mathcal{A},$

 $Pr[Verify(k, m^*, t^*) = 1] = negl(\lambda).$

4 Block Cipher Modes of Operation

We now recall two common ways to use block ciphers to construct CPA-secure encryption schemes.

Counter mode. Let $F: K \times \{0, 1\}^n \to \{0, 1\}^n$ be a secure PRF. In the following, k is the PRF key and $m = (m_1, \ldots, m_n)$ are the blocks of the message (i.e., $m_i \in \{0, 1\}^n$). In randomized counter-mode encryption, sample IV $\stackrel{\text{R}}{\leftarrow} \{0, 1\}^n$, and the ciphertext is (V, c_1, \ldots, c_n) . We view IV as an integer between 0 and $2^n - 1$, and perform arithmetic operations modulo 2^n .

Figure 1: Counter-mode encryption

Figure 2: Counter-mode decryption

Cipherblock chaining (CBC). Let $F: K \times \{0, 1\}^n \to \{0, 1\}^n$ be a block cipher (i.e., a secure PRP). In the following, k is the PRP key and $m = (m_1, \ldots, m_n)$ are the blocks of the message (i.e., $m_i \in \{0, 1\}^n$). In CBC encryption, sample IV ξ^{R} {0, 1}ⁿ, and the ciphertext is (IV, c_1, \ldots, c_n).

Figure 3: CBC encryption

Figure 4: CBC decryption

5 Public-Key Encryption

A public-key encryption scheme is define with respect to a message space M and a ciphertext space C (technically, each of these sets can be a function of the security parameter λ) and consists of three algorithms:

- Setup \rightarrow (pk, sk): The setup algorithm outputs a public key pk and a secret key sk. (Technically, this algorithm takes the security parameter λ as input).
- Encrypt(pk, m) \rightarrow ct: On input the public key pk and a message $m \in M$, the encryption algorithm outputs a ciphertext ct.
- Decrypt(sk, ct) \rightarrow m: On input a secret key sk and a ciphertext ct, the decryption algorithm either outputs a message $m \in M$ or a special symbol \perp (to indicate a decryption failure).

Correctness. A public-key encryption scheme is correct if for all (pk, sk) output by Setup and all messages $m \in M$,

$$
Pr[Decrypt(sk, Encrypt(pk, m)) = m] = 1.
$$

Semantic security. The semantic security experiment is defined analogously to the corresponding notion in the secret-key setting:

We say the encryption scheme satisfies semantic security if for all efficient adversaries \mathcal{A} ,

SSAdv[
$$
\mathcal{A}
$$
] = |Pr[$b' = 1 | b = 0$] - Pr[$b' = 1 | b = 1$] = negl(λ).

CCA security. We start by defining the CCA-security experiment for public-key encryption. This is the analog of the corresponding secret-key notion.

We say the encryption scheme satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient adversaries A,

$$
CCAAdv[\mathcal{A}] = |Pr[b' = 1 | b = 0] - Pr[b' = 1 | b = 1]| = negl(\lambda).
$$

6 Digital Signatures

A digital signature scheme is defined over a message space M and a signature space S (technically, each of these sets can be a function of the security parameter λ) and consists of three main algorithms:

- Setup \rightarrow (vk, sk): The setup algorithm outputs a public verification key vk and a secret signing key sk. (Technically, this algorithm takes the security parameter λ as input).
- Sign(sk, m) $\rightarrow \sigma$: On input the signing key sk and a message $m \in M$, the signing algorithm outputs a signature $\sigma \in \mathcal{S}$.

• Verify(vk, m, ct) \rightarrow {0, 1}: On input the verification key vk, a message $m \in M$, and a signature $\sigma \in S$, the verification algorithm outputs a bit $b \in \{0, 1\}$ (indicating whether the signature is valid or not).

Correctness. The signature scheme is correct if for all (vk, sk) output by Setup and all messages $m \in M$,

 $Pr[Verify(vk, m, Sign(sk, m)) = 1] = 1.$

Unforgeability. We start by defining the unforgeability experiment:

Existential unforgeability experiment:

- The challenger samples (vk, sk) \leftarrow Setup and gives vk to the adversary.
- The adversary can now make signing queries to the challenger:
	- Signing query: The adversary sends $m \in M$ to the challenger. The challenger replies with σ ← Sign(sk, m).
- The adversary $\mathcal A$ outputs a message $m^* \in \mathcal M$ and signature $\sigma^* \in \mathcal S$.

We say an adversary $\mathcal A$ is admissible for the signature unforgeability game if the adversary does not make a signing query on the message m^* . We say the signature scheme satisfies unforgeability if for all efficient and admissible adversaries A,

 $Pr[Verify(sk, m^*, \sigma^*) = 1] = negl(\lambda).$