
CS 346: Cryptography Fall 2024

Homework 2: Symmetric Cryptography

Due: October 1, 2024 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/fa24/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: CBC Padding Oracle Attack [20 points]. Recall that when using a block cipher in CBC
mode, the message must be a multiple of the block size. When encrypting messages whose length is not
a multiple of the block size, the message must first be padded. In the TLS protocol (used for securing
traffic on the web), if v bytes of padding are needed, then v bytes with value (v −1) are appended to the
message. As a concrete example, if 1 byte of padding is needed, a single byte with value 0 is appended
to the message before applying CBC encryption. In TLS, the record layer is secured using an approach
called “MAC-then-Encrypt1” (which as we will soon see, is not the ideal combination). At decryption time,
the ciphertext is first decrypted (and the padding verified) before checking the MAC. In older versions
of OpenSSL, the library reports whether a decryption failure was due to a “bad pad” or due to a “MAC
verification failure.” One might think that it was beneficial to provide an informative error message on
decryption failure. As you will show in this problem, this turns out to be a disaster for security.

Suppose an adversary has intercepted a target ciphertext ct encrypted using AES-CBC. Let cti be any
non-IV block in ct. Let mi be the associated message block. Show that if the adversary is able to submit
ciphertexts to a CBC decryption oracle and learn whether the padding was valid or not, then it can learn
the last byte of mi with probability 1 by making at most 512 queries. Here, the CBC decryption oracle only
says whether the ciphertext was properly padded or not; it does not provide the output of the decryption
if successful. Then, show how to extend your attack to recover all of mi . Hint: Start by showing how to
test whether the last byte of mi is some value t by making 2 queries to the decryption oracle.

Remark: Are there settings where the server would repeatedly decrypt ciphertexts of the user’s choosing?
It turns out that when using IMAP (the protocol email clients use to fetch email) over TLS, the IMAP client
will repeatedly send the user’s password to the IMAP server to authenticate. With the above padding
oracle (implemented using a “timing channel”), an adversary can recover the client’s password in less
than an hour! This problem shows that if a decryption failure occurs, the library should provide minimal
information on the cause of the error. This type of “padding oracle” attack was the basis of the “Lucky 13”
attack on TLS 1.0 (2013)—many years after they were first discovered (2002) and thought to be patched!

1In MAC-then-encrypt, the encryption algorithm first computes a MAC t on the message m, and the ciphertext is the encryption
of the message-tag pair (m, t ).

https://www.cs.utexas.edu/~dwu4/courses/fa24/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/fa22/info.html
https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1069/1069.pdf


Problem 2: CBC Padding Oracle Attack, Part II [14 points]. In this problem, your task is to implement
the CBC padding oracle attack you developed in the previous problem. We have provided starter code
that contains an implementation of AES-CBC encryption using the Python cryptography library. Your
task is to write an algorithm that takes as input a ciphertext encrypted using AES-CBC (with randomized
IV) and outputs the associated message given access to a padding oracle. Specifically, the padding oracle
takes as input a ciphertext and outputs True if the decrypted plaintext has a valid pad (as defined in the
previous problem), and False if not.

Your task is to implement the decrypt method in cbc.py. You cannot change the interface for decrypt;
otherwise, you are free to implement the algorithm however you prefer (using standard Python libraries,
including the Python cryptography library). Your code will be evaluated only for correctness. Some
helper functions are provided in util.py. Your attack must satisfy the following requirements:

• Your algorithm should support decrypting messages of arbitrary non-zero length. The message
you return should not include any padding (you can use the strip_padding method in util.py to
remove the padding).

• The input ciphertexts can be encryptions of arbitrary byte sequences (i.e., they are not necessarily
ASCII-encoded strings).

• Your algorithm is allowed to make at most 8192 queries to the padding oracle for each non-IV block
of the ciphertext. Note that this is an upper bound and many algorithms will require significantly
fewer queries.

The following is the output of running base.py on our reference implementation (34 lines of code):

$ python3 base.py
Plaintext: b'CS 346'
Decrypted output: b'CS 346'
Successful decryption? True
Number of padding oracle queries: 1608

Submission instructions: Upload your code (consisting of only cbc.py) to Gradescope under Home-
work 2A. Note that your implementation must work with our provided main.py and util.py. Your
submission will be autograded, and upon submission, your code will be run on a simple test case. There
is no written component for this question.

Problem 3: Cryptographic Combiners [20 points]. Suppose we have two candidate constructionsΠ1,Π2

of a cryptographic primitive, but we are not sure which of them is secure. A cryptographic combiner
provides a way to use Π1 and Π2 to obtain a new construction Π such that Π is secure if at least one of
Π1,Π2 is secure (without needing to know which ofΠ1 orΠ2 is secure). Combiners can be used to “hedge
our bets” in the sense that a future compromise of one ofΠ1 orΠ2 would not compromise the security of
Π. In this problem, we will study candidate combiners for different cryptographic primitives.

(a) Let H1, H2 : {0,1}∗ → {0,1}λ be arbitrary collision-resistant hash function candidates. Define the
function H(x) := H1(x)∥H2(x). Prove or disprove: if at least one of H1 or H2 is collision-resistant,
then H is collision-resistant.

https://www.cs.utexas.edu/~dwu4/courses/fa23/static/cbc.zip
https://cryptography.io/en/latest/


(b) Let (Sign1,Verify1) and (Sign2,Verify2) be arbitrary MAC candidates2. Define (Sign,Verify) as follows:

• Sign((k1,k2),m): Output (t1, t2) where t1 ← Sign1(k1,m) and t2 ← Sign2(k2,m).

• Verify((k1,k2),m, (t1, t2)): Output 1 if Verify1(k1,m, t1) = 1 =Verify2(k2,m, t2) and 0 otherwise.

Prove or disprove: if at least one of (Sign1,Verify1) or (Sign2,Verify2) is a secure MAC, then (Sign,Verify)
is a secure MAC.

Problem 4: Time Spent [1 point]. How long did you spend on this problem set? This is for calibration
purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

2Namely, you can assume that they are correct (but could be arbitrarily broken).


