
CS 346: Cryptography Fall 2024

Homework 4: Public-Key Cryptography

Due: November 12, 2024 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/fa24/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: Commitment Schemes from Discrete Log [18 points]. A commitment scheme is a digital
analog of a “sealed envelope.” Specifically, a sender can commit to a message m and send the resulting
commitment c to a receiver (i.e., seal the message in an envelope). The commitment c should not reveal
anything about the committed value m. Later on, the sender can open up the commitment and convince
the receiver that c is indeed a commitment to the message m (i.e., open up the envelope and recover the
original message). The commitment scheme is hiding if c hides the message m and is binding if the sender
cannot open the commitment c to any message m′ ̸= m. In this problem, we will construct a commitment
scheme from the discrete log assumption:

• Public parameters: Let G be a group of prime order p and let g ,h ∈G be arbitrary elements of G
(that are not the identity element).

• Commitment: To commit to a message m ∈ Zp , sample r
R←− Zp and output the commitment

c ← g mhr .

• Open: To open the commitment c to the message m, the sender gives (m,r ) to the receiver and the
receiver checks that c = g mhr .

(a) Show that the above commitment scheme is perfectly hiding (i.e., the commitment c does not leak
any information about the committed message m). Namely, show that given the commitment c ∈G,
every candidate message m′ ∈Zp is equally likely (over the randomness of r ). One way to show this

is that for every m′ ∈Zp , there is a unique r ′ ∈Zp such that c = g m′
hr ′

.

(b) Show that the above commitment scheme is computationally binding assuming hardness of discrete
log in G. Namely, show that if an efficient adversary can output a commitment c together with
openings (m,r ) and (m′,r ′) such that g mhr = c = g m′

hr ′
and m ̸= m′, then the adversary can also

compute the discrete log of h base g . In other words, if the sender can open the commitment in two
different ways, then it can also compute the discrete log of h in G.

Remember to give a brief explanation why any inverses you take actually exist.

https://www.cs.utexas.edu/~dwu4/courses/fa24/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/fa22/info.html


Problem 2: DDH in Composite-Order Groups [14 points]. Let G be a cyclic group of order 2q where q
is odd. Let g be a generator of G. Show that the DDH assumption does not hold in G. (Specifically, for
this setting, the DDH assumption asserts that the distributions of (g , g a , g b , g ab) and (g , g a , g b , g r ) where

a,b,r
R←−Z2q ) are indistinguishable to any efficient adversary.)

Remark: This shows that the DDH assumption does not hold over Z∗
p whenever p = 2q + 1. In fact,

the DDH assumption does not hold in Z∗
p for any prime p (there is an efficient distinguisher based on

Legendre symbols). However, assumptions such as CDH or discrete log still plausibly hold over Z∗
p .

Problem 3: Encrypted Group Chat [28 points]. Suppose a group of n people (denoted P1, . . . ,Pn) want to
set up a shared key for an encrypted group chat. At the end of the group key-exchange protocol, everyone
within the group should know the key, but an eavesdropper on the network should not. We will use the
following variant of Diffie-Hellman over a group G of prime order p and generator g :

• At the beginning of the protocol, P1 chooses s
R←−Zp . We will view P1 as the group administrator that

all of the other parties know.

• Each of the other parties Pi (2 ≤ i ≤ n) samples ri
R←−Zp and sends xi ← g ri to the group administra-

tor P1. The administrator P1 replies to Pi with xs
i .

• The group key is then defined to be k ← H(g s), where H : G→ {0,1}λ is a hash function.

Both the group description (G, p, g ) and the hash function H are public and known to everyone (both the
protocol participants and the eavesdropper).

(a) Show that both the group administrator P1 and each of the parties Pi (2 ≤ i ≤ n) are able to efficiently
compute the group key.

(b) We say that the group key-exchange protocol is secure against eavesdroppers if no efficient adversary
who sees the transcript of messages sent by the honest parties P1, . . . ,Pn is able to distinguish the
group key k from a uniform random string over {0,1}λ, except perhaps with negligible probability.
If we model H as an “ideal hash function” (i.e., random oracle), it suffices to argue that the shared
Diffie-Hellman secret g s is unguessable: namely, for all efficient adversaries A,

Pr[A(x2, xs
2, . . . , xn , xs

n) = g s] = negl(λ), (1)

where xi = g ri and r2, . . . ,rn , s
R←− Zp . This means that an eavesdropper who only observes the

messages sent by the honest parties cannot guess g s , and correspondingly, the shared key H(g s) is
uniformly random and unknown to the adversary.

Show that under the CDH assumption in G, the shared Diffie-Hellman secret g s in the group key-
exchange protocol above is unguessable (i.e., Eq. (1) holds for all efficient adversaries A). As usual,
you should consider the contrapositive: show that if there exists an efficient adversary A that can
predict g s from the above challenge tuple (x2, xs

2, . . . , xn , xs
n), then there exists an efficient algorithm B

that breaks CDH in G. Your algorithm should work for any polynomially-bounded n (i.e., you should
not fix a value of n in your reduction) Hint: Your algorithm B may need to invoke A more than once.
Remember to compute the advantage of the adversary you construct.



Problem 4: Time Spent [1 point]. How long did you spend on this problem set? This is for calibration
purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?


