
Suppose H is a Merkle-Damgard hash function built from aeure compression function

Several
ways to build a keyed function :

1 . Prepend key : F(k
,

m) : = H (k 11m)

↳ Insecure due to structure of Merkle-Damgard : can mount an "extension attack."
given H(k//m)

,
can compute

H(k//m//m') by extending Merkle-Dangard chain

2. Append key : F(k
, m) : = H(m 11 k)

-> Similar to hash-then-MAC construction and vulnerable to same offline attack : adversary finds a collision in the

Merkle-Damgard prefix and uses that to construct a forgery -> for SHA-1
, they used PDF files

↳ Structure exploited in SHA-1 collision demonstration (can generate arbitrary collisions once prefix matches)
3. Envelope method : F(k

, m) : = H(k //m/lk) 3 for reasonable pseudorandomness assumptions on h (e.g.,
both

4 Two-key nest : F((k1
,

k2) , m) : = H(k2 //H(k , 11 m) ↑ (k
,m) : = h(k

, m) and Fz(k
,
m) : = h(m , k) is a PRF)

,
both

of these constructions are secure PRFs on a variable-size domain

hash-based MAC

HMAC is a PRF/MAC based on the two-key rest (though with correlated keys) :

HMAC(k
,

m) : = H(k ,
11 H(k2

,
m))

where k
,
5kipad and K2* k* opad

and iPad and opad are fixed strings (specified in the HMAC standard)

y &
0x36 repeated Ox5C repeated

Security : Since K
,

and ke are correlated
,

need to make stronger assumption on security (e.g .,
h remains pseudorandom under a relatedak)

#stantiations : Typically ,
denoted HMAC-H where H is the hash function

e.
g.,

HMAC-SHA1

HMAC-SHA256 -
one of the most widely-used MAC on the web (used in SSL/TLS,

IPsec
, SSH , and more)

#MACfor key-derivation : Recall that under reasonable assumptions ,
HMAC is a secure PRF

In
many protocols, we need to derive multiple keys from a single master keyle.g,

derived from a password)
↳ To derive multiple independent cryptographic keys, a PRF is a natural primitive :

Kenc =HMAC(kmaster
,

"enc" (YPRF security says derived keys are computationally indistinguishable from

kmacHMAC (kmaster
,

"mac") uniform

y y ↑
tag (just has to be uniquederived keys master key

This approach is used in TLS and IPsec to derive session keys durin session setup
↳ General paradigm is the "expand" step in hash-based key-derivation (HKDF-RFC 5869)

↳ Consists of two procedures :

-

Extract : derive a master key from
entropy

Source Le.g,
a user password)

-

Expand: derive sub-keys from the master

key
Both steps rely on HMAC

Another approach to construct MACs : domain extension for PRES I small-domain PRF - large-domain PRE]

Approach 1 : use CBC (without IV)

#
output

~

Not encrypting messages so no need for IV (or intermediate blocks)
↳ Mode often called "raw-CBC"

Raw-CBC is a way to build a large-domain PRF from a small-domain one

↳ Can show security for "prefix-free" messages more precisely,
raw-CBC is a prefix-free PRE : pseudorandom as long

Eincludes fixed-length
I

as PRF never evaluated on two values where one is a prefix of other
I

messages as a special case

But not secure for variable- length messages
: "Extension attack"

1 . Query for MAC on arbitrary block X :

Et j #- F(kx) = tFt->T

2. Output forgery on message (X ,
X # t) and tag + - => t is a valid tag on extended Amessage (x

, tox)

↳ Adversary succeed with advantage 1

raw CBC can be used to build a MAC on fixed-length messages,
but not variable- length messages

(more generally , prefix-free)
(ECBC)

For variable- length messages,
we use "encrypted CBC" : standards for banking/financial services

- critical for security↳ variant used in ANSIX9.9
,

ANSIX19.9 standards & lusing the same key not secure)

& apply another PRF with a different key to the output of rawCBC

I#output !
To use encrypted CBC-MAC

, we need to assume message length is even multiple of block size (similar to CBC encryption)
↳ to sign messages that are not a multiple of the block size

,
we need to first ead the message

->
as was the case with encryption , padding must be injective
↳ in the case of encryption , injectivity needed for correctness

↳ in the case of integrity, injectivity needed forecurity [if pad(mo) = pad (m,) ,
mo and m, will have the same

Standard approach to pad : append 1000 ... 0 to fill
up block [ANSIX9. 9 and ANSI X9. 19 standards)

~ Note : if message is an even multiple of the block length ,
need to introduce a dummy block

-> Necessary for
any injective function : 190, 13541 > 150 ,13"

-

This isapadding scheme [PKCS#7 that we discuss previously in the context of CBC
encryption

isabyte-padding scheme)

Encrypted CBC-MAC drawbacks : always need at least 2 PRF evaluations (using different keys) especially bad for authenticating
messages must be padded to block size

3
short (e.g., single-byte) messages

Better approach : raw CBC-MAC secure for prefix-free messages
↳ Can we apply a "prefix-free" encoding to the message?

~
equal-length messages cannot have one be prefix of other

-Option1 : Prepend the message length to the message " different-length messages differ in first block

Problematic if we do not know message length at the beginning (e.g.,
in a streaming setting)

Still requires padding message to multiple of block size)
-

Option2 : Apply a random secret shift to the last block of the
message

(X
, X2

,
. .

., Xe) + (X ,, Xz, . . .,
Xe0k) where k * X

Adversary that does not know In cannot construct two messages that are prefixes except with1 probability "IX) (by guessing k)

basis for CMAL (standardized by WIST in 2005)

A parallelizable MAC /PMAC) -

general idea :

~
derived as E(k, 01)

-

so key is just k,
V

It ...t P (k,) are important - otherwise
, adversary can

↓
9(k, 1)-⑦ P(k,2)= 4(k,3 - 0 P(k,

1)+ &ermute the blocks

↑ ↳ "mask" term is of the form Vick where

multiplication is done over GF(24) where n is# the block size (constants Vi carefully chosen for

efficient evaluation(
I

Can use similar ideas as CMAC Crandomized prefix-free encoding) to support messages that is not constant multiple of block size

Parallel structure of PMAC makes it easily updateable lassuming F is a PRP)
↳

suppose we change block i from m[i) to m'[i) : PMAC is "incremental" :

compute F (k
,tag)m(iJtP(kil)Ok,m'ZiP(k

T & can make local updates
old value without full recomputation

In terms of performance :

-

On sequential machine
, PMAL comparable to ECBC, NMAC,

CMAC Best MAC we're seen so far
,

but not used...

- On parallel machine, PMAC much better
3
&eason : patents : (not patented anymore

!]

-Summary : Many techniques to build a large-domain PRF from a small-domain one (domain extension for PRF)
↳) Each method (ECBC

,
CMAC

, PMAC) gives a MAC on variable- length messages
->

Many of these designs (or their variants) arestandardized

