

if
$$T = g^2$$
, then (g^3, g^2, m) is uniform over G^2 (since y, 2 are sampled independently of each other an
of m) — this is exactly the distribution where A sees $(c_0, c_i) \stackrel{a}{\leftarrow} G^2$

What if we want to encrypt longer necessages? [or messages that is not a group element] - Hybrid encryption (key encapsulation [KEM]):

Use PKE scheme to encrypt a secret key [PKE Encrypt (pk, k) "header" [slows] Encrypt payload using secret key + authenticated encryption]AE. Encrypt (k, M) "payload" [fast]

orade,

Vanilla ElGamal described above is not CCA-secure!

Ciphertexts are malleable: given ct = (g³, h³·m), can construct ciphertext (g³, h³·m·g) which decrypts to message m·g L> directly implies a CCA attack

Several approaches to get CCA security from DH assumptions:

- Cramer-Shoup (CCA-security from DDH) based on hash-proof systems We do not know of any groups where CDH - Fujisaki-Okamoto transformation (using an ideal hash function + CDH) believed to be hard, but interactive CDH - Make stronger assumption (interactive CDH + use ideal hash function): (CDH is hard even
- Make stronger assumption (interactive CDH + use ideal hash function):
 Setup: x & Zp pk:h
 Labo called strong DH assumption
 Symmetric authenticated
 A DDH oracle a DDH oracle
 Encrypt (pk, m): y & Zp k ← H(g, g^x, g^y, h^y) ct' ← EncAE (k, m)
 C ← (g^y, ct')
 Decrypt (sk, c): k ← H(g, g^x, co, c^x)

Essentially ElGanal where key derived from bosh function

 $m \leftarrow Dec_{AE}(k, c,)$

Diffie-Hellman key-exchange is an anonymous key-exchange protocol: neither side knows who they are talking to L> vulnerable to a "man-in-the-middle" attack

Alice	Bab	Alice	Eve Bob	Observe Eve can
9 [°] X		~~~~> _:	$g^{x} \rightarrow g^{z_{1}} \rightarrow g^{z_{1}$	now decrypt all
, <u> </u>		ہ ب	₹2g¥	between Alice and
axy	J	4		Bob and Alice + Bub
- J %	ງ ·	x22	9 ^{* ε} 2 9 ³ ^ε 1 9 ³ ^ε 1	have no solea!

What we require: <u>authenticated</u> key-exchange (not anonymous) and relies on a root of trust (e.g., a certificate authority) Lo On the web, one of the parties will <u>authenticate</u> themself by presenting a <u>certificate</u>

To build authenticated key-exchange, we require more ingredients - namely, an integrity mechanism [e.g., a way to bind a build authenticated key-excrumy-, ______ message to a sender _ a "public-trey MAC" or <u>digital signature</u>] We will revisit when discussing the TLS protocol

Digital signature scheme: Consists of three algorithms:

- Setup -> (vk, sk): Outputs a verification key vk and a signing key sk

F Sign (sk, m) → o: Takes the signing key sk and a message m and outputs a signature or

-Verify $(vk,m,\sigma) \rightarrow 0/1$: Takes the verification key vk, a message m, and a signature σ , and outputs a bit 0/2Two requirements:

- Correctness: For all messages m ∈ M, (vk,sk) ← Setup, then

Pr [Verify(vk, m, Sign(sk,m)) = 1] = 1. [Honestly-generated signatures always verify]

- Unforgeability: Very similar to MAC security. For all efficient adversaries A, SigAdu [A] = Pr[w=]] = regl(2), where W is the output of the following experiment:

dversary		challenger
1	, vk	(vk,sk)← Setup
	men	
I	$\leftarrow Sign(sk,m)$	
Ţ		
(m*, 0*	¢)	

Let $m_1, ..., m_Q$ be the signing queries the adversary submits to the challenger Then, W = 1 if and only if: Verify $(uk, m^*, \sigma^*) = 1$ and $m^* \notin \{m_1, ..., m_0\}$

Adversary cannot produce a valid signature on a new message.

Exact analog of a MAC (slightly weaker untergrability: require adversary to not be able to forge signature on new message) HAC security required that no forgery is possible on any message [needed for authenticated encryption] digital signature elliptic-curve } standards (widely area & algorithm > DSA:) on the web - eg, TLS)

It is possible to build digital signatures from discrete log based assumptions (DSA, ECDSA)

L> But construction not intuitive until we see zers knowledge proofs

Lo We will first construct from RSA (trapolator permutations)