Also possible to use RSA to build PKE:

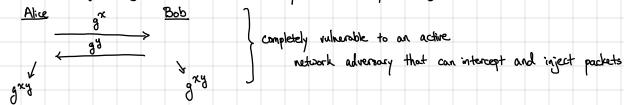
- <u>In practice</u>: Most widely-used standard for RSA encryption is PKCS1 (by RSA labs) → Has shorter cipturtexts if we are encrypting a single ZN element (no need for KEM + symmetric component]
 - (helpful if PKE just used to encrypt short token or metadata)
 - General approach: suppose N is 2048 bits and use want to encrypt 256-bit messages

ive will first apply a randomized pudding to m to obtain a 2048-bit pudded message

PKCS 1 podding:

(mode 2) 00 02 non-zero rondom bytes 00 m 16 bits s bits where s t

t-bits long


Encryption: Compute mond ~ PKCS(m) and set C ~ mond [i.e., directly apply RSA traphoor permutation to padded] Decryption: Compute mond ~ C^d and recover m from mond

- In SSL v 3.0: during the handshake, server oberrypts client's message and checks if resulting mod is well-formed (i.e., has valid PKCS1 padding) and rejects if not
 - L> scheme is videouble to a chosen ciphentext attack!
 - illows adversory to eavesdrop on convection
- Devastating attack on SSL3.0 and very hard to fix: need to change both servers + clients!

TLS 1.0: fix is to set m 2 2% if decryption over tails and proceed normally (never alert client if podding is malformed) — some tails at a later point in time, but hopefully no critical information is leabed... Take-away = PKCS1 is not CCA-secure which is very problematic for key exchange

https:// Absence of security proof should always be traubling ...

New standard: Optimal Asymmetric Encryption Badding (OAEP) [1994] } Standardized in PKCS1 Scan be shown to be CCA-secure in random aracle model version 2.0 Now that we have digital signatures, let's revisit the guestion of key exchange (with active security)

In addition, should guarantee that one compromised session should not affect other houst sessions - Alice -> Eve should not compromise security of Alice +> Bob

Authenticated kay exchange (AKE): provides <u>security</u> against active adversouries - Requires a "root of trust" (certificate authority) -> we need some binding between keys and identities

Alice, phase CA (one-time setup, at least for duration of validity period)

- Certificates typically have the following format (X509):

- Subject (entity being authenticated)

- Public key (public key for subject for signature scheme)

- CA: identity of the CA issuing the certificate

- Validity clates for certificate

the browser and operating system have a set of hard-coded - CA's signature on certificate certificate authorities and their respective public keys

(usually several hundred authorities)

[public-key infrastructure (PKI)]