
Basic flow of Diffie-Hellman based AKE :

Bank

xce y7p

·Encankol)" 1
,
1= H(g, g+, go , g

*)

& ↳ Sign (skBanks (g , g*, g0 , plank)
↓

derive k
,
k' = H(g, gY, gb, g

*3) Session
key k

check O is signature on (g . gY, go , pkBank)
under pkBank is the public key identified by certians

Sutrition: certbank identifies Server as Bank (with plank
o binds the session parameters (g , g*, gG) to

the public key identified by certank

#nof protocol : Alice knows she is talking to Bank (but not vice versa!)

"one-sided AKE" - most common mode on the web

↳
Basis of TLS 1. 3 handshake ("one-sided" AKE) ALWAYS USE TLS 1 . 3 - Don't invent your own ARE protocol !

client

7 MentHello : List of supported ciphersuites - oldersystems/ foreignSyste
is

leg ., AES-GCM-128
,

AES-GCM-256) ciphers-Possible TLS extensions older versions of

&ver Hello : Chosen ciphersuite TLS vulnerable to-
kA- B and kB + A

cipher downgrade attacks

Application layer secured using unidirection keys

Protecting signing keys is extremely important for a CA

Common approach : threshold signatures

Recall RSA signatures : 0 = H(m)" (mod N)

Idea: Split signing key d into many
"shares" :

sample d
, ...,
do Fyn) such that ditdz + ... + dn = d

Observe : given any subset of shares (that is not the full set) ,
d is perfectly

hidden

Suppose we give one share di to each server

Kat H(m)
given signature shares O : H(m)

di
,

let o : Titin] Eii = Titen] H(m)
di

= H(m) = H(m)d
which is a signature on m

TLS supports session setup using a "pre-shared key" (so full handshake not needed) :

client ver Alient
-full handshake

>

NeoSession
Ticket (nonce

,
id

first messageE#HelloPresharedky0-RTTdata
=> vulnerable to

replay attack & derived from preshaved key
-errerresponse

preshared key
derived from session secrets

,
nonce,

and id
fresh key KAtB , KBEA derived for

rest of session (based on initial messages)

negotiated 7(identity of per

&+put of AKE protocol : (key ,
in)

#thenticity : Only party that knows key is id (i
.
e

.,
the party identified by id)

&crecy
: All parties other thanclient and id cannot distinguish key from random (i

.e
., key is hidden)

&sistency : If id also completes protocol ,
then it outputs (key, idclient)

&
if we do not have client authentication

, then

idclient is empty

Often also requireForwardsecrecy
:

compromise of server in the future anot affect secrecy of sessions in the past
-

In TLS
,

server secret is a signing key-fresh Diffie-Hellman secret used for each session is fresh ("ephemeral")
Compromising signing key allows impersonation of server

,
but does not break secrecy of past sessions

-
As we will see

,
not all AKE protocols provide forward secrecy

Very tricky to get right as we will see... Just use I!

#from PKE : suppose server has certificate authenticating a public key for a PKE scheme (CCA-secure) :

~ nonce

/rTTak/skink &
Yields statically-secure ARE

(no forward secrecy)
↓ ↓ (rk) =Decrypt (skBank

,
c) Compromise of skBank compromises past

k
,

Bank k
,
I check that '

=r

Sessions

↑
no client authentication

If we do not encrypt the nonce r : replay attack possible (adversary replays messages from past session -
e .g.

"send Eve $10")
&

nonce ensures freshness

