Focus thus for in the course: protecting communication leg, nessage confidentiality and nessage integrity)

Remainder of course : protecting computations

Remainder of cou
<u>Zero-knowledge</u> : a
Little de defining idea at the leart of theoretical cryptography with surprising implications wolledge: a defining idea at the leart of theoretical cryptography
https://www.aspharticration.com/ (DSA/ECDSA signatures based on ZK!)
https://www.aspharticration.com/ (DSA/ECDSA signatures based on ZK!) Lis Showcases the importance and power of definitions (e.g., "What does it mean to know something?")

We begin by introducing the notion of a proof system"

In by influencing the notion of a proof system -
statemen
is true

e. ^g., "This Sudoku puzzle has ^a unique solution" these are all examples of

" The number N is a product of two prime numbers p and q" statements
"I know the discrete log of h base g"

the verifier is assumed to be an efficient abouthing

We model this as follows:
Prover (X) verifier (x) X: statement that the prover is trying to prove by introducing the notion of a "proced": A prover words to convince
e.g., "This Sudoku puzzle has
"The number N is a p
"I know the discrete log
"His as follows:
"Prover" (X) verifier" (
"T") (known to both prover the property of the pro A is assumed to be an officient abouthout
- X: statement that the prover is trying to prove (known to both
- Prover and revition) - We will write d to denote the set of <u>true</u>
This the proof of X - Statements (called a lan prover

Statements (called a language)
 \Rightarrow b c {0,1} - given obdered X and proof π , verifier decides whether to
critics we care about:
- Completeness: Honest prover should be able to convince honest verifier of true statement \Rightarrow b ϵ ϵ 0,13 - given obstement x and proof π , verifier decides whether to accept or reject Properties we care about:

Completeness: Honest prover should be able to convince honest verifier of frue statements

 $\forall x \in L : P_r [\pi \leftarrow P(x) : V(x, \pi) = 1] = 1$ Could relax requirement to allow $\frac{1}{2}$

<u>- Completene</u>
- <u>Soundress</u> undress: Dishonest prover connot convince honest verifier of fake statement Landell some error $\forall x \notin L : P_r[\pi \leftarrow P(x) : \sqrt{x}, \pi] = 1$ = negl(|x1)
Capligible in the statement length $\begin{aligned} \text{cutoff} \quad \text{conver} \quad & \text{for} \quad \text{for} \quad$

Typically, proofs are "one-shot" (i . e \mapsto Languages with these types of proof systems precisely coincide with NP (proof of statement χ is to send NP witness w)

Recall that NP is the class of languages where there is a deterministic solution-checker :

 $L \in NP \iff \exists \text{ efficiently--computable relation } R_0 \text{ s.t. } \chi \in L \iff \exists \omega \in \{0, 1\}^{\vert x \vert} : R(x, \omega) = 1$ Y ⁴ [↑] [↑] Statement language witness NP relation class of languages shere

class of languages shere
 \Leftrightarrow
 \exists efficiently-comput
 $\angle E$
 \uparrow
 $\downarrow E$
 \downarrow
 $\$

Proof system for NP:

outo MP:

prover (x) yerifies
 ω yerifies Verifier (x) w $accept$ if $R(x, x) = 1$

Perfect completeness + soundness

Going beyond NP : we augment the model as follows

- Add randomness: the verifier can be a *randomized* algorithm allows proving statements that are beyond NP - Add interaction : verifier can ask "questions" to the prover

Interactive proof systems [Goldwasser - Micali-Rackoff]: efficient and randomized $proper$ (x) as follows
randomized aborith
ions" to the prov
Rockoff):
verifier (x) $\text{verfier}(\chi)$ My beyond NP: we augment the mode
- Add nondomness: the verifier can be
- Add interaction: verifier can ask "g
- cractive proot systems [Goldwasser - Mic
- provec (x)
- cractive proot should satisfy complete se augment the model
the verifier can ask model
verifier can ask model
me [Goldwaser - Mical
me [Goldwaser - Mical $\frac{1}{\sqrt{2\pi}}$ verifier (x)
verifier (x)
 \mapsto be fort >
-
-
completeness + soundness (or
prince wants to conduce in
Prince wants to conduce in
tend
 $\pi = (p, q)$
>

Interactive proof should satisfy completeness ⁺ soundness (as defined earlier)

Consider following example: Suppose prover wants to convince verifier that ^N ⁼ pq where p,g are prime land secret). prover (N, p,g) Verifier (N) <u>(२,</u> s convince verifier
Verifier
8)
J

 $\frac{1}{\sqrt{2}}$ be forts

accept if ^N ⁼ pg and reject otherwise

Proot is certainly complete and sound, but now verifier <u>also</u> learned the factorization of N... (may not be desirable if prover was trying to convince verifier that N is a proper RSA modulus (for a certainly complete and sound, but now verifier <u>also</u> learned the factorization of N.. (may not be desirable it prover o
her verifier that N is a proper RSA modulus (for a cryptographic scheme) <u>without revealin</u>y factoriz nce vertier that N is a proper RSA modulus (for a cryptographic scheme) <u>without revealin</u>y factorizotron in the process
L> In some sense, this proof conveys <u>information</u> to the verifier [i.e., verifier learns something i the proof <u>J</u> to convince verifier that N is a proper RSA modulus (for a cryptographic scheme) <u>without revealing</u> factorization is
 $L \rightarrow$ In some sense, this proof conveys information to the verifier [i.e., verifier learns something if

Zen-knowledge: ensure that resitier does <u>not</u> learn anything (other than the fact that the statement is true)
How do we define "zero-knowledge"? We will introduce a notion of a "simulatore."

We will introduce a notion of a "simulator"

for ^a language 2 Definition. An interactive proof system $\langle P,V\rangle$ is zero-knowledge if for all efficient (and possibly maliciaus) verifiers V^* , there exists an efficient simulator S such that for all $\chi \in L$: $V_{i\text{env}}(\langle P,V\rangle(x)) \approx S(x)$ r does <u>not</u> learn any

"? We will introduce

for a lon

yoten $\langle P,V\rangle$ " is zen:

imulator S such that

View _{V*} ($\langle P,V\rangle$ (x))

"Condom variable denoting

sent and received by
Sent and received by

random variable denoting the set of messages sent and received by ^V* When interacting with the prover P on input ^X What does this definition mean?

- View $(\mathcal{P} \hookrightarrow \vee^* (\mathcal{R}))$: this is what \vee^* sees in the interactive proof protocol with $\mathcal P$
- $S(\chi)$: this is a function that only depends on the statement χ which V^* already has
- If these two distributions are indistinguishable, then anything that V^* could have learned by talking to P, it could have learned just by invoking the simulator itself, and the simulator output only depends on χ , which \dot{V}^{\star} already knows $\frac{1}{5}$ invoking the simulator itself, and the simulator output
 $\frac{1}{5}$ In other words, anything V^* could have learned (i.e
- \mapsto In other words, anything v^* could have learned (i.e., computed) after interacting with P , it could have learned <u>without</u> ever talking to P!
- Very remarkable definition !

~can in fact be constructed from OWFs

- More remarkable: Using cryptographic commitments, then every language LEIP has a zero-knowledge proof system.
- \mapsto Namely, anything that can be proved can be proved in zero-knowledge!

We will show this theorem for NP languages. Here it suffices to construct ^a single zero-knowledge proof system for an NP-complete language. We will consider the language of graph 3-colorability.

in definition!
• Moing crypton
• anything that
• surge We will
• graph G, co ر
3colorable colorable

and 3-colorable

and 3-colorable

3-coloring: given a graph G, can you color the vertices so that no adjacent nodes have the same color?

~cryptographic analog of ^a sealed "envelope" (see HWH)

cryptographic arches of a sealed "envelope" (see HW4)
We will need a commitment scheme. A (non-interactive) commitment scheme consists of three algorithms (Setup, Commit, Open): read a commitment source. A (non-interactive commitment scheme consists of three argoritments) or
- Setup -> 0 : Outputs a common reference string (used to generate/validate consitments) or - Commit (o, m)-t(C, i): Takes the CRS ^O and message ^m and outputs ^a commitment cand opening it · Verify $(\sigma, m, c, \pi) \rightarrow$ 0/1: Checks if c is a valid commitment to m (given $\pi)$

