
In many cases
,

we want a stronger property
: the prover actually "knows" y a statement is true (e.g.,

it knows a "witness")

For instance,
consider the following language :

2 = ChED/EXe4 : h =gX] = 6 Note : this definition of 2 implicitly defines an NP relation R :

I
group of orderp generator of I R(k

,
x) = 1()n=gXe6

In this case
,

all statements in D are true (i.e.,
contained in 2)

,
but we can still consider a notion of proving knowledge of

the discrete log of an element hE -

conceptually tronger property than proof of membership

Philosophicalquestion
: What does it mean to "know" something

?

If a prover
is able to convince an honest verifier that it "knows" something,

then it should be possible to extract that quantity
from the prover.

Refinition. An interactive proof system (P
, V) is a proof of knowledge forandrelationMifthereexistsarefficiea specific

extractor E such that for any s and
any prover p

*

relation R (as opposed to the language 2)

Pr[w= 2
**
(x) : R(x, w) = 1) < Pr[(P*, v)(x) = 1) = E

more generally ~
knowledge error

could be polynomially smaller

Trivial proof of knowledge :

prover sends witness in theLear to the verifier
↳ In most applications,

wedditionally require zero-knowledge

Note : knowledge is a strictly stronger property than soundness
-> if protocol has knowledge error => it also has soundness error E li.e . a dishonest prover convinces an honest verifier of a

false statement with probability at most 2)

assume g, he G

~roving knowledge of discrete log (Schnour's protocol whereG has prime ordera

Suppose prover wants to prove it knowsX such that higLie
. prover demonstrates knowledge of discrete log of he base g)

prover #erifier

-
-

verify that g = U . h.



zero knowledge only required to hold against an honest verifier
tpleteness-

X

,then ux
= Uh

leg view of the honest verifier can be simulata

#Honest-VerifierZero-knowledge : build a simulator as follows (familiar strategy : run the protocol in "reverse") :

on input (g ,
h) :

1. sample zLP

2. sample <**P ~ uniformly random challenge
3. Set u = 9/2 and output (u, , z)

↑ chosen so that simulated transcript is identically distributed

gUniformlyrandomta
gz = Moh & as the real transcript with anAmnest verifier

Z is uniformly random

(relation
satisfied by a)Valid proof

What goes wrong if the challenge is not sampled uniformly at random (i .
e

.,
if the verifier is dishonest)

Above simulation no longer works (since we cannot sample z first)
↳ To get general zero-knowledge, we require that the verifier firstcommit to its challenge (using a statistically hiding committment)

for simplicity,
we assume

Y ↑* succeeds with probability I

#nowledge : Suppose P*
is (possibly malicious) prover that convinces honest verifier with probability 1

. We construct an extractor as follows:

1. Run the prover
P

*

to obtain an initial
message U.

2. Send a challenge C***p
to P*

.
The prover replies with a response Z.

3.
"Rewind" the prover

P
*

so its internal state is the same as it was at the end of Step 1
. Then

,
send another

challenge(EXp to P*
.

Let z2 be the response of P*
4. Compute and output X = (z

, -z2)(c-c27"eLp -

Since P
*

succeeds with probability 1 and the extractorperfectly simulates the honest verifier's behavior
,

with probability 1
,

both (u,
,
z

,)

and (4,
,

zu) are

bothacceptingtranscripts, Thismeansthatthe

=> gz
+

= g
zz + 4X

i
with overwhelming probability,

=> X = (2 ,
- zz)(k -2)t[p4+

Thus
,

extractor succeeds with everwhelming probability.

(Boreh- Shoup ,
Lemma 19.2)

If p
*

succeeds with probability E
,

then need to rely on "Rewinding Lemma" to argue that extractor obtains two accepting
transcripts with probability at least E2-Yp.

The ability to extract a witness from
any

two accepting transcripts is very useful

↳

calledScalsoundness/formessageprotocols
can extract the witness

y
initial challenge

response [same initial message ,
different challenges]

message



3-message protocols that satisfy completeness , special soundness
,

and HVIK are called &-protocols
-) G-protocols are useful for building signatures and identification protocols

How can a prover
both
proveknowledge and yet be zero-knowledge at the same time?

↳ Extractor operates by "rewinding" the prover
(if the

prover
has good success probability ,

it can answer most challenges correctly.
↳ But in the real (actual) protocol ,

verifier cannot rewind (i .e ., verifier only sees prover on fresh protocol executions)
,

which can

provide zero-knowledge.

Many extensions of Schnorr's protocol to prove relations in the exponent.

(NI2K)
#fon-interactivezero-knowledge : Can we construct a zero-knowledge proof system where the prof is amingle message from the

prover
to the verifier?

prover (x,2) verifier (x)
--

I
be 50 , 13

NIZKs for NP unlikely to exist for NP /unless NPE BPP)
,

but possible in the random orace

model (as well as in the common reference string model)

#ShamirHeuristsinrandomradmodea
log:

prover (g,
h= g" , x) Verifier (g. gt)

-- -

In this protocol ,
verifier's message is uniformly random

I
-

land in fact ,
is "public coin" - the verifier has no- secrets)

- ↓

verify that gE = u. h.

Keyidea : Replace the verifier's challenge with a hash function H : 50 . 13
*

-> Xp
Namely ,

instead of sampling (EXp ,
we sample < + H(g,

h
,

u). 7

prover can now compute this quantity on its own!

Completess , zer-knowledge , proof of knowledge follow by a similar analysis as Schnoor [will rely on random oracle)

Signatures from discrete log in RO model (Schnorr) :

-

Setup : x
* *

P
vk : (g ,

h = g*) Sk : Y

-

Sign (sk , m) : r = *
4 & signature is a NITK proof of knowledge

u = gr c = H(g ,
h

,
u

, m) z + r +x of discrete log of h (with challenge

o = (u, z)
derived from the message m)

C

-

Verify (vk ,
m . 0) : write w = (n

,
z) , compute c = H(g,

b
,
n

,
m) and accept if g = U.

vk = h



Security essentially follows from security of Schnoor's identification protocol (together with Fiat-Shamir
↳ forged signature on a new message m is

a
roof of knowledge of the discrete log I can be extracted from adversary)

Length of Schnoor's signature : vK : (g,
h=

g
*) w :

(gHhgu
verification checks that gE =gh

Sk : X

other components, so =>Iot = 2 . 161 (512 bits if 161 = 223]
do not need to include

But
,

can do betterr... observe that challenge< only needs to be 128-bits (the knowledge error of Schnoor is Y11 where C

is the set of possible challenges), so we can sample a 128-bit challenge rather than 256-bit challenge. Thus
,

instead of sending
(gt ,

z)
, instead send (c

,
z) and compute gr = g*/ and that c = Algih , g ,

m). Then resulting signatures arebits

128 bit challenge[

256 bit group element

#m
portantnote:Schnosignatures areandomized ,andsecurityrelieson

havingo randsis

Then
, we have

8
= (g , [H(g , hig,

m)
,

z
,
= +x)] z

,
- zu = (- G)x = x = (-() (z ,

- z)

Oz = (g" , < = Hig , higY mz) ,
zu= r + (x)

This is precisely the set of relations the knowledge extractor uses to

recover the discrete log X (i.e
.,

the signing key) !

EtterministicSchnorr: We want to replace the random value r & Up with one that is deterministic
,

but which does not compromise security
-> Derive randomness from message using a PRE

.

In particular, signing key includes a secret PRE key K
,

and

signing algorithm computes rF(k, m) and o Sign 1sk. m ; r).

↳ Avoids randomness reuse/misuse vulnerabilities
.

digital signature algorithm/elliptic -curve DSA
↓TLS protocol -

In practice,
we use a variant of Schnoor's signature scheme called DSA/ECDSA

but we use it because Schnor
-> larger signatures (2 group

elements - 512 bits) and proof only in "generic group" model I
was patented...

until 2008 J

ECDSA signatures (over a group
D of prime order p) :

-

Setup : X * I
P

vk : (g,
h = gY) sk : X

deterministic function specifically· flu)
parses u = (Y

,) &Fg2 where Eg is

↓ specified by ECDSA the base field over which the elliptic curve is defined
,

-

Sign (sk,
m) :

G r = f(u) = [p I and outputs Y (modp) ,
where is viewed as a I

s = (H(m) + r =x)/a =4 value in [0, g)
o = (r

,
s

- Verify (vk
,

m
,
c) : write o = (r, s)

, compute U = gH(m)/sm/s , accept it v = f (u)

vk = h

- H(m)/sMs
[H(m) + rX]/[H(m)+x)/Hm+x]Correctness : U =

g and r = f(g))

Securityanalysisnontrivial:requireseither strongassumptionsormodelingsandgo,- P-256 or Curve 25519)


