
Now we will return to the notion of a secure encryption scheme:

Goal is to capture property that no efficient adversary can learn any
information about the message given only the

ciphertext. Suffices to argue that no efficient adversary can distinguish encryption of message mo from my
,
even if

Mo
,
m

,
areadversarially-chosen

.

Let (Encrypt, Decrypt) be a cipher. We define two experiments /parameterized by b 50, 13) :
beso, 13

adversary challenger semantic- -

mo
,
m
,
E M

k *K

↓

& experinarity
-

26
- Encrypt(k,mp)

↓
b' = 50, 13

Adversary chooses two messages and receives encryption of one of them. Needs to guess which one (i
.e
., distinguish

encryption of mo from encryption of my

Let Wo : = Pr[b = 11 b = 0] 3 probability that adversary guesses 1

W
.
: = Pr[b' = 1/b = 1] lif adversary is good distinguisher, these two should be very different)

Define semantic security advantage of adversary A for cipher TISE = (Encrypt , Decrypt)
SSAdv[A

,
TTse] = / Wo-Wil

Definition. A cipher TSE
= (Encrypt, Decrypt) is semantically secure if for all efficient adversaries A

,

SSAdv[A
,
TIse] = negl(x)

&
X is a security parameter (here

,
models thelength of the key)

Understanding the definition :

Can we learn the least significant bit of a message given only the ciphertext (assuming a semantically-secure cipher)
No ! Suppose we could .

Then
, adversary can choose two messages mo

,
m

,
that differ in their least significant bit

and distinguish with probability 1
.

This generalizes tomny efficiently - computable property of the two messages.

How does semantic security relate to perfect secrecy
?

#rem . If a cipher satisfies perfect secrecy,
then it is semantically secure

.

Prof. Perfect secrecy means that Vmo
,
m,

EM
,

CeC :

Pr[k = K :

Encrypt (k
, mo) = c) = Pr[kEK :

Encrypt (k , m 1) = <]

Equivalently ,
the distributions

&EK : Encrypt (k
, mol3 andK: Encrypt (k, mi) 3

Do Di

are indentical (DoD.) .

This means that the adversary's output dis identically distributed in the two experiments,
and so

SSAdr[A
,
TIsE] = /Wo-Wil = 0

.

~ encryption key (PRG seed)
seems straightforward,2Eorollary. The one-time pad is semantically secure.

(=- G(s) m but takes some care to pure
- m + G(s)0c -
L L

#orem. LetO be a secure PRG . Then ,
the resulting stream cipher constructed from G is semantically secure.

Prof. Consider the semantic security experiments :

Experiment O : Adversary chooses mo
,

m
,

and receives Co = G(s) # Mo 3
Want to show that adversary's
output in these two experiments are

Experiment 1 : Adversary chooses mo
,

m
,

and receives < = G (s) # M, indistinguishable
Let Wo = Pr[A outputs 1 in Experiment O]

W
.

= PrIA outputs 1 in Experiment 1]

Idea: If G(s) is uniform random string (i
. e

..
one-time pad) ,

then Wo = Wi
.

But G(s) is like a one-time pad!

Define Experiment 0' : Adversary chooses Mo
,

m , and receives Co = - Mo where to So, 13
"

Experiment 11 : Adversary chooses Mo
,

m
,

and receives c = t # M
, where & 30 , 13

"

Define Wo
,

wi accordingly.

First
, observe that Wo = Wi Cone-time pad is perfectly secure).

Now we show that /Wo-Wol = negl and IW . Wil < negl
=> IWo - Wil = 1 Wo - Wo + Wo -Wi + Wi -Wil

-> IWo-Wol + /Wo'-Wil + IWi-Wil by triangle inequality
= negl.

+ negl .

= negl

Typical proof strategy in cryptography : of byIncontrapositive .

Sow. If G is a secure PRG
,

then for all efficient A
,
/Wo-Wil = negl

Common proof technique:

prove the contrapositive .

-ontrapositive : If A can distinguish Experiments O and O'
,

then G is not a secure PRG.

Suppose there exists efficient A that distinguishes Experiment O from OI

=> We use A to construct efficient adversary B that breaks security of G
.

↳ this step is a reduction
-

Iwe show how adversary live.
, algorithm) for distinguishing Exp.

0 and 0 > adversary for PRG)

Algorithm B (PRG adversary) :

PRG challenbed
o, we

-

f b = 0 : s & 50 , 13 x
I

+ = G(s)

if b = 1 : + = So , 137Fl↓->

-

t m

where t = G(s) or
61e9017
-

+ 50 ,1)n iteso
, 13

Running time of B =

running time of A = efficient

Compute PRGAdv[B,
G].

Pr[Boutputs 1 if b = 0] = Wo -if b = 0
,

then A gets G(s)#m which is precisely the behavior in Exp.
O

Pr[B outputs 1 if b = 1) = Wo if b = 1
,

then A gets- Q m which is precisely the behavior in Exp.
O'

=> PRGAdv[B , 6) = /Wo-Wol
,

which is non-negligible by assumption. This proves
the contrapositive.

#mportant note : Security of above schemes shown assuming message space is 10 , 13 (i.e.,
all messages are n-bits long)

Epractice: We have variable- length messages. In this case
, security guarantees indistinguishability from other messages

of the same length,
but length itself is leaked [inevitable if we want short ciphertexts)

-> can be problematic -

see traffic analysis attacks !

So far
,

we have shown that if we have a PRG
,

then we can encrypt messages efficiently (stream cipher)

Question : Do PRGs exist ?

Unfortunately , we do not know !

n > 1
-

Claim
:

IPRGswithnoutrivialstretchexistthenPAconsider
the following decision problem :

on input +E 50 , 13
,

does there exist 590,
13 such that t = G(s)

This problem is in NP (in particular, s is the witness). If G is secure ,
then no polynomial-time algorithm can solve

this problem (if there was a polynomial-time algorithm for this problem ,
then it breaks PRF security with

advantage 1-nx< Since n > X)
.

Thus
, P * NP.

In fact
,

there cannot even be a Mobabilistic polynomial-time algorithm that solves this problem with probability better than

E + 3 for non-negligible 330. This means that there is no BPP algorithm that breaks PRG security
:

if PRGs exist , then NPABPP
↑

bounded error probabilistic polynomial time

"randomized algorithms that solves problem with bounded (constant) error

"

Thus, proving existence of PRG requires resolving long-standing open questions in complexity theory !
=>

I cryptography : We will assume that certain problems are hard and base constructions of Chopefully small) number of

conjectures.
- Hardness assumptions can be that certain mathematical problems are intractable (e.

g., factoring)
-> typically for public-key cryptography (and half of this course)

- Hardness assumptions can be that certain constructions are secure (e.g.,
"AES is a secure block ciphert

↳

typically for symmetric cryptography
↳

constructions are more ad hoc
, rely on heuristics

,
but very last in practice

Examples of Stream ciphers (PRGs) : designed to be
very

fast (oftentimes with hardware support)
- Linear congruential generator (e.g .,

rand() function in C)

Vi+ 1
= a ri + b (mod m) typical implementation : output is a

- few bits of ro
, " , rz, ...

(full

value of ro
,
r
, rz,. . . . never revealeda

, b ,
m are public constants /verysimpleeasytoimplementever of 2)

↳
To is the initial seed Or LV/w)

period↳ need to choose so outputs have long I

Not a cryptographic PRG : NEVER USE rand() To GENERATE CRYPTOGRAPHIC KEYS ?

-

Given full outputs, outputs fully predictable (if enough bits of state revealed
, can brute force unknown bits)

-

Even given partial outputs (e.g .,
least significant few bits of output) and having secret a

,
b, m

,
can still

be broken (linear functions are not secure ! see Boneh-Shoup Ch
.

3. 7 .
1 and related papers)

- Often good enough for non-cryptographic applications (e.g.,
statistical simulation)

-

Linear feedback shift registers (LFSRs) initial state of LFSR

register state - determined by the seed
V

->#010101111101-> PRG output

I 4/ ~very friendly for hardware implementations
L

v taps (fixed for the construction)
#linefeedback" of

&
linear function of register state (addition modulo 2)

Eachiteration : rightmost bit is output by LFSR

bits at tap positions are xored and shifted in from the left

1 clock cycle = 1 output bit -

very simple and fast !

By itself
,

LFSR is totally broken : after observing m-bits of output ,
the entire state of the LESR is known and

subsequent bits are completely predictable !

Proposal : Use multiple LFSRs and combine in some non-linear way :

Example: CSS (content scrambling system) for DVD encryption [1996]
-> actual CSS encryption has a few differences

,
but

1 bit of

S
#bit LESR/bits the core attack is unaffected

-

LFSR is 1
#y+cont23-> 8 bits

↓ bitLESR1-40-bit key 8 bits C :
carry bit from previous operation (initially 0)

(needed to comply with export control restrictions)

- Brute-force attack :

guess the seed (2240 time)
-

Can do much better with more clever strategy
-> Generalidea: - if we know a few bytes of output of the stream cipher and the output of the

17-bit LFSR
,

can subtract to obtain output of 25-bit LESR

- brute force the seed of the 17-bit LFSR
,

each gress
induces a state for the 25-bit LFSR

- check if output matches or not

16-> Attack now runs in -2 time

-

By 1999
, full key-recovery attack on can recover key from DVD in just ~18 seconds on 450MHz processor

Itotally broken !]

#theexamples : GSM encryption (AS/1 , 2 stream ciphers for encrypting GSM cell phone traffic)
↳

xor outputs of 3 LFSRS
↓

Snowden documents : NSA can process encrypted
Pre-2000s! ↳ tried to keep cipher design private ,

but eventually reverse engineered and attacks found
A5/1

Never rely on security by obscurity !

Bluetooth EO stream cipher uses a design based on 4 LFSRs in conjuction with a 2-bit finite state

machine - also not secure !
C 1987)

-

RC4 stream cipher (widely used - SSL/TLS protocol, 802.11b)

Numerous problems :

-bits/initial PRG seed -

Bias in initial output
: Pr[second byte = 07 :E <

↓

#2048-bitinternal stateI
↳ When

using
RC4

,
recommendation is to ignore first 256

bytes due to potential bias

↓

I-byte per
round

↳ Correlations in output :Probability ofseeing
(0, 0 in outa

↳ Given outputs of RC4 with related keys (e.g ., keys sharing
common suffix) , possible to recover keys after seeing
few blocks of output
↳ Can be

very problematic on weak devices (who may not

have good sources of entropy)
-

Modern Stream ciphers /eSTREAM project : 2004 - 2008)
-

Salsa 20 (2005) -) Chalha (2008)

↳ core design maps 256-bit key ,
64-bit nonce

,
64-bit counter onto a 512-bit output

↑ & Design is more complex:

/
enables using same allows random access into

- relies on a sequre
of rounds

key (and different nonces) the stream
- each round consists

of 32-bit additions
,

Xors
,to encrypt multiple messages and bit-shifts

Iwill discuss later)

↳
very fast even in software (4-14 CPU cycles/output byte) - used to encrypt TLS traffic between Android and Google

services

