
&

Recall ; the one-time pad is not reusable (i.e, the two-time pad is totally broken(
NEVER REUSE THE KEY TO A STREAM CIPHERI

But wait... we "proved" that a stream cipher was secure
,

and yet ,
there is an attack ?

Recall security game
: bE50 , 13 #serve : adversary only sees re ciphertext

↓
adversary challenger key is only used an
- -

- kKMo
, m

Cb
Cy- Encrypt (k

,mp) => Security in this model says thing
↓ about multiple messages/ciphertexts
b'E50 ,13

Poblem : If we want security with multiple ciphertexts, we need a different or stronger definition (CPA security)

&efinition : An encryption scheme TISE = (Encrypt, Decrypt) is secure against chosen-plaintext attacks (CPA-secure) it for all efficient

adversaries A :

CPAAdvIA, TIse] = /Pr[Wo = 13 -Pr[Wi = 1]) = negl.
where Wa (bE 90,13) is the output of the following experiment :

be so ,13

adversary

name idea as in original semantic security game, but allow adversary
to make encryption queries (also called a "left-or-right" oracle(

be 50, 13

I
Adversary's goal is to

guess which of mo or m
, was encrypted, given access

Ioutput of experiment W. to an-encryptionoracle (i .e
., adversary gets to see encryptions of messages

of its choice
.

&aim
.

A stream cipher is not CPA-secure .

Proof. Consider the following adversary :

be 50, 13

↓

adversary Challenger- -

choose Mo ,
m

,
Ec s 50 , 134 Pr[b = 1/b = 0) = 0 since c = mot((s) = <

where mo F m, Pr[b = 11 b = 1) = 1 since c = m
.

G(s) +C
Mo

, Mo
- => CPAAdvIA

,
TIse] = 1

moG(s)

Mo
,

M,

-

c= my G(s)
-

&

output O if C= C

I

output 1 if CF (

Observe : Above attack works for
any

deterministic encryption scheme,
-

=> CPA-secure encryption must be randomized!
=> To be reusable

,
cannot be deterministic

. Encrypting the same message twice should not reveal that identical

messages were encrypted.

To build a CPA-secure encryption scheme
, we will use a "block cipher"

~

Block cipher is an invertible keyed function that takes a block of n input bits and produces a block ofa output bits

-

Examples include 3DES (key size 168 bits
, block size 64 bits)

AES (key size 128 bits
,

block size 128 bits) block ciphers
-

Will define block ciphers abstractly first : pseudorandom functions (PRFs) and pseudorandom permutations (PRPs)
↳

Generalidea : PRFs behave like random functions

PRPs behave like random permutations

Refinition. A function F : KXX+ Y with key-space K
, domain X

,
and range Y is a pseudorandom function (PRF) if for all

efficient adversaries A
,
/Wo-Wil = negl , where Wa is the probability the adversary outputs 1 in the following

experiment : bE 50, 13

adversary hallenger!
k = K; f() = F(k,) if b = 0

F if b = 1

&
the space of all possible functions from X-Y

(function f Funs[X, Y] can be represented by a truth table of

↓

L
size (y/IX)) - this is usually exponentially large !

b' = 90, 13

PRFAdvIA
,
F) = / Wo-W , l = /Pr[A outputs 1/b = 0) - Pr[A outputs 11b

= 1]/

#Intuitively : input-output behavior of a PRF is indistinguishable from that of a random function (to any computationally-bounded
adversary) (264)

3DES : 90
,

13168 x 50, 1364 + 90 , 1364 (k) = 2168
I FunsEXYS

= (c) S space of random functions is
128

AES : 40 , 13128 x 90 ,1328 -> 50, 13 1k) = 228 exponentially-larger than key-space!

&efinition : A function F : KXX + X is a pseudorandom permutation (PRP) if
- for all keys K

,
F(K

,
:) is a permutation and moreover

,
there exists an efficient algorithm to compute

F- (k
,

%) :

VkEK : VxeX : F" (k
,
F(k

,x) = X

- for IEK
,

the input-output behavior of F(K
,

:) is computationally indistinguishable from f() whe

- & Perm[X] and Perm[X] is the set of all permutations on X Lanalogous to PRE security)

#te: a block cipher is another term for PRP (just like stream ciphers are PRGs)

Observe that a block cipher can be used to construct a PRG :

: 50,13
*

x50,13" 50,13" be a block cipher
In

Define 6 : 20,13
*
-> 50, 13 as

G (k) = F(k
, 1) (lF(k

,
2)/l ... (lF(k

,
1) - this stream cipher allows dom access !

↑ ↑

string concatenation write input as an n-bit string

we said PRP above
Ijust require thatm< loge)

Iwill revisit this
v

Theorem
. If F is a secure PRF

,
then 6 is a secure PRO

.
-

Proof . As usual
, we show the contrapositive: if G is not a secure PRG,

then F is not a secure PRF.

Suppose we have efficient adversary A for 6
.

We use A to build adversary for F :

bE 50, 13

Algorithm for breaking F
challenger for F

I
1. If l = poly ,

then B is efficient

&El
-

#El So 2. If b = 0 : Bsends G(k) to A

T where k is a uniformly
random key

If b = 1 : B sends uniformly random·
to A

- string If is random function)

be 50, 13 3. PRFAdv[B
,
F] = r[b' = 1/b =0] -

Pr[b'= 11 b = 1)/
= (PrEA outputs 11 b= 0] -PrTA outputs1(b=1)
= PRGAdv[A

, G]

which is non-negligible by assumption.

But
...

we used a block cipher (PRP) in our construction above.
Does the proof still

go through?

Not quit...
for a random function

,
f(1) = f(z) with probability in & but I'" might be

very very small...

for a random permutation,
f(l) = +(2) with probability O adversary won't notice unless it sees a

"Collision" [i .e
.,

two values X
,y

where

f(x) = f(y))

SwitchingLemma.
Let F :

KXYXbeasecurePRPThen
for

any Q-query adversary- .

&roof Idea
. Adversary essentially cannot tell the difference unless it sees a collision. If there is no collision

,
then it is just

seeing random values. How
many queries before there is a collision ? Birthday paradox : Q - IT

Fake-away : If IXI is large leg, exponential) ,
then we can use a PRP as a PRF

·

- 3DES : n = 64 so IX) = 2b+
[if adversary makes 232 queries ,

then can use it as a PRF)
64

-

AES : n = 128 so IX) = 228 [if adversary makes 2 queries,
then can use it as a PRE]

