
Messageintegrity : Confidentiality alone not sufficient
,

also need message integrity. Otherwise adversary can tamper with the message

le.g.,
"Send $100 to Bob " -> "Send $100 to Eve")

In some cases (e.g.,
software patches) , integrity more important than confidentiality

Idea : Append a "tag" (also called a "signature") to the message to prove integrity (property we want is tags should be hard to forge
his tolerates aingle error

Observation: The tag should be computed using a keyed-function (better error-correcting codes can do much+ better)
↳ Example of keyless integrity check : CRC (cyclic redundancy check) Isimple example is to set tag to be the parity]

-> this was used in SSH vI (1995) for data integrity ! Fixed in SSH v2 (1996)

↳ also used in WEP (802. 11b) protocol for integrity
- also broken!

Eblem : If there is no key, are can compute
it ! Adversary can tamper with message

and compute the new tag.
#efinition

.
A message authentication code (MAC) with key-space K

, message space M and tag space T is a tuple of

algorithms TIMAC = (Sign , Verify) :

Sign : KxM + T & Must be efficiently-computable
Verify : k + M x + + 50 , 1)

Correctness : KEK
,

UmEM :
-

Pr[Verify (k ,
m

, Sign (k,m)) = 1) = 1

↑
Sign can be a randomized algorithm

#einingsecurity
: Intuitively, adversary should not be able to compute a tag on any message without knowledge of the key

↳ Moreover
,

since adversary might be able to see tags on existing messages (e.g., signed software

updates) ,
it should not help towards creating a new MAC

adversary gets to choose

messages to be signed
-

&efinition . AMALTTMAc= (Sign, Verify) satisfies existential unforgeability against chosen message attacks (EUF-CMA) if for all efficient

adversaries A
,

MACAdvIA, TMAc] = Pr[W =1) = negKx) ,
where W is the output of the following security game

:

adversary challenger As usual
, I denotes the length of the MAC secret key

Je.g., log (k) = poly(x))# nlm of the Note : the key can also be sampled by a special KeyGen

algorithm (for simplicity , we just define it to be

(m*, t* ) uniformly random)

Let m,
, .

. ., MQ be the signing queries the adversary submits to the challenger, and let ti Sign (k
,
mil be the challenger's

responses.

Then
,

W = 1 if and only if :

Verify (k , m*, +
* ) = 1 and (m*, +

*) ((m
, +)

.
. . .

,
(Ma

,
tal]

MAC security notion says that adversary cannot produce a new tag on any message even if it gets to obtain tags on messages of its

choosing.

First
,

we show that we can directly construct a MAC from any PRE.



#Is from PREs : Let F : K * M + T be a PRE
.

We construct a MAC TIMAC over (K
,
M

, T) as follows :

Sign (k ,
m) : Output + - F(k

, m)

Verify (k
,
m

,
t) : output 1 if t = F(k

, m) and O otherwise

#theorem. If F is a secure PRF with a sufficiently large range ,
then TTMAC defined above is a secure MAC. Specifically,

for
every

efficient MAC adversary A
, there exists an efficient PRF adversary B such that

MACAdvCA
,
TIMAc] < PREAdvTB

,
F] + 1 .

Intuitionfor proof : 1. Output of PRF is computationally indistinguishable from that of a truly random function
.

2 .
If we replace the PRF with a truly random function

, adversary wins the MAC
game only if it

correctly predicts the random function at a new point. Success probability is then exactly"T.

#plication : Any PRF with large output space can be used as a MAC.

↳ AES has 128-bit output space,
so can be used as a MAC

#rawback : Domain of AES is 128-bits
,

so can only sign 128-bit (16-byte) messages

How do we sign longer messages ? We will look at two types of constructions :

1 . Constructing a large-domain PRE from a small-domain PRE (i. e.,
AES)

2. Hash-based constructions



So far
,

we have focused on constructing a large-domain PRE from a small-domain PRF in order to construct a MAC

on long messages
-> Alternative approach : "compress" the message itself leg:

"hash the message) and MAC the compressed representation

still requireunforgeability : two messages should not hash to the same value [otherwise trivial attack : if H(m) = H(mz)
,

the

MAC on m , is also MAC on M2]
↳ unter-intuitive : if hash value is shorter than messages,

collisions always exist -

so we can only require that they are

hard to find

Refinition
.

A hash function H : M + T is collision-resistant if for efficient adversaries A
,

CRHFAdvIA
,H] = Pr[(mo

,
mi) -> A : H(mo) = H(m .)] =

negl.

As stated, definition is problematic : if IM/ ITI
,

then there always exists a collision mo
,

my so consider the adversary
that has me , my hard coded and outputs mo , mit

-
Thus, some adversary ways exists leven if we may not be able to write it down explicitly)

↳
Formally ,

we model the hash function as being parameterized by an additional parameter leg., a "system parameter" or

a "key") so adversary cannot output a hard-coded collision

-
In practice ,

we have a concrete function (e
.g., SHA-256) that does not include security or system parameters

↳ believed to be hard to find a collision even though there are infinitely-

many (SHA-256 can take inputs
ofarbitrary length)

#Afrom CRHFs : Suppose we have the following
- A MAC (Sign , Verify) with key space 14

, message space Mo and tag space T Jeg,MoCost
- A collision-resistant hash function H : M, -> Mo

Define S'(k ,m) = S(k , H(m) and

V(k
,

m
,
t) = V(k

,
H(m)

, t)

#herem. Suppose TMAc = (Sign, Verify) is a secure MAC and H is a CRHF
·

Then
,

TIMAC is a secure MAC . Specifically,

for every efficient adversary A
,

there exist efficient adversaries Bo and B
,

such that

MACAdv[A
,

TTMAc] < MACAdvIBo
,

TTMAc] + CRHFAdv[Bi
,
F1]

#o Idea. Suppose A manages to produce a valid forgery + on a message m
. Ther

,
it must be the case that

- t is a valid MAC on H(m) under TTMAC

- If A queries the signing oracle on m' = m where H(m) = H(m)
,

then A breaks collision- resistance of H
- If A never queries signing oracle on m 'where H(m) = H(m)

,
then it has never seen a MAC on H(m) under

TTMAC .
Thus

,
A breaks security of TTMAC

.

[See Borch-Shoup for formal argument -

very
similar to above : just introduce event for collision occurring vs .

not occurring)


