
CS 346: Introduction to Cryptography

Basic Probability Fact Sheet

Instructor: David Wu

Basic Definitions

• A finite probability space (Ω, 𝑝) consists of a finite set Ω = {𝜔1, . . . , 𝜔𝑛} and a probability mass function
𝑝 : Ω → [0, 1] such that

∑
𝜔∈Ω 𝑝 (𝜔) = 1. We refer to Ω as the sample space and 𝜔𝑖 as a possible

outcome of a probabilistic event. Throughout this handout, we will only consider finite probability

spaces.

• An event 𝐸 over a probability space (Ω, 𝑝) is a set 𝐴 ⊆ Ω. The probability of event 𝐸, denoted Pr[𝐸]
is defined to be Pr[𝐸] :=

∑
𝜔∈𝐸 𝑝 (𝜔). For an outcome 𝜔 ∈ Ω, we will write Pr[𝜔] to denote 𝑝 (𝜔).

• A random variable 𝑋 over a probability space (Ω, 𝑝) is a real-valued function 𝑋 : Ω → R. For the

remainder of this handout, we will assume all random variables are defined over a probability space

(Ω, 𝑝).

Expected Value and Variance

• The expected value E[𝑋 ] of a random variable 𝑋 is defined to be

E[𝑋 ] :=
∑︁
𝜔∈Ω

𝑋 (𝜔) Pr[𝜔] .

• Linearity of expectation: For all random variables 𝑋,𝑌 and all 𝛼, 𝛽 ∈ R,

E[𝛼𝑋 + 𝛽𝑌 ] = 𝛼 E[𝑋 ] + 𝛽 E[𝑌 ] .

• The variance Var(𝑋 ) of a random variable 𝑋 is defined to be

Var(𝑋 ) := E
[
(𝑋 − E[𝑋 ])2

]
= E[𝑋 2] − 𝐸 [𝑋 ]2

Useful Bounds

• Union bound: For every collection of events 𝐸1, . . . , 𝐸𝑛 ,

Pr

[ ⋃
𝑖∈[𝑛]

𝐸𝑖

]
≤

∑︁
𝑖∈[𝑛]

Pr[𝐸𝑖] .

• Markov’s inequality: Let 𝑋 be a non-negative random variable. For all 𝑡 > 0,

Pr[𝑋 ≥ 𝑡] ≤ E[𝑋 ]
𝑡

.
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• Chebyshev’s inequality: Let 𝑋 be a random variable. For all 𝑡 > 0,

Pr[|𝑋 − E[𝑋 ] | ≥ 𝑡] ≤ Var(𝑋 )
𝑡2

.

• Chernoff bounds: Let 𝑋1, . . . , 𝑋𝑛 be independent binary-valued random variables (i.e., the value of

𝑋𝑖 is either 0 or 1). Let 𝑋 =
∑

𝑖∈[𝑛] 𝑋𝑖 and 𝜇 = E[𝑋 ]. Then, for every 𝑡 > 0,

Pr[𝑋 ≥ (1 + 𝑡) 𝜇] ≤
[

𝑒𝑡

(1 + 𝑡)1+𝑡

]𝜇
Pr[𝑋 ≤ (1 − 𝑡) 𝜇] ≤

[
𝑒−𝑡

(1 − 𝑡)1−𝑡

]𝜇
.

Often, the following simpler (and looser) bounds suffice:

∀0 ≤ 𝑡 ≤ 1, Pr[𝑋 ≤ (1 − 𝑡)𝜇] ≤ 𝑒−
𝑡2𝜇

2

∀0 ≤ 𝑡, Pr[𝑋 ≥ (1 + 𝑡)𝜇] ≤ 𝑒−
𝑡2𝜇

2+𝑡 .

Another useful variant (by Hoeffding) gives a bound on the sum of any sequence of bounded random

variables. Specifically, let 𝑋1, . . . , 𝑋𝑛 be independent random variables where each 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖] for

𝑎𝑖 , 𝑏𝑖 ∈ R. As before let 𝑋 =
∑

𝑖∈[𝑛] 𝑋𝑖 and let 𝜇 = E[𝑋 ]. Then, for all 𝑡 > 0,

Pr [|𝑋 − 𝜇 | ≥ 𝑡] ≤ 2 exp

(
− 2𝑡2∑

𝑖∈[𝑛] (𝑏𝑖 − 𝑎𝑖)2

)
.

For the special case where 𝑋𝑖 ∈ [0, 1] for all 𝑖 ∈ [𝑛], the bound becomes

Pr [|𝑋 − 𝜇 | ≥ 𝑡] ≤ 2𝑒−2𝑡2/𝑛 .

Example 1. Suppose𝑋1, . . . , 𝑋𝑁 are independent binary-valued random variables where Pr[𝑋𝑖 = 1] = 1

2
+𝜀.

Let 𝑋 = 1

𝑁

∑
𝑖∈[𝑁 ] 𝑋𝑖 . If 𝑁 = 𝜆/𝜀2

, then

Pr[𝑋 ≥ 1/2 + 𝜀/2] ≥ 1 − negl(𝜆) .

This follows by a direct application of the Chernoff/Hoeffding bound:

Pr

[
𝑋 <

1

2

+ 𝜀

2

]
= Pr


∑︁

𝑖∈[𝑁 ]
𝑋𝑖 − 𝑁

(
1

2

+ 𝜀
)
< − 𝜀

2

𝑁

 ≤ 2𝑒−𝜀
2𝑁 2/2𝑁 = 2𝑒−𝜆/2 = negl(𝜆).

Averaging Argument

The basic averaging argument states that if 𝑋1, . . . , 𝑋𝑛 ∈ R are values with mean 𝜇 = 1

𝑛

∑
𝑖∈[𝑛] 𝑋𝑖 , then there

exists at least one 𝑖 ∈ [𝑛] where 𝑋𝑖 ≥ 𝜇. There are several variants of this fact that often come in handy:

Lemma 1. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 1] whose average is 𝜇. Then at least an 𝜀-fraction of the 𝑋𝑖 ’s are at least 𝑝
where 𝜀 = 𝜇−𝑝

1−𝑝 .

Proof. Let 𝑡 be the fraction of𝑋𝑖 ’s where𝑋𝑖 ≥ 𝑝 . Then, 𝜇 < (1−𝑡)𝑝+𝑡 = 𝑝+(1−𝑝)𝑡 , so 𝑡 > (𝜇−𝑝)/(1−𝑝). □

We state two immediate corollaries of Lemma 1 that are often useful:
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Corollary 2. If 𝑋1, . . . , 𝑋𝑛 ∈ [0, 1] whose average is 𝜇, then at least a (𝜇/2)-fraction of the 𝑋𝑖 ’s are at least
𝜇/2.

Corollary 3. Let 𝑋1, . . . , 𝑋𝑛 ∈ [0, 1] whose average is 𝜇 = 𝑝 + 𝜀. Then, at least an 𝜀
2(1−𝑝−𝜀/2) >

𝜀
2(1−𝑝 ) fraction

of the 𝑋𝑖 ’s are at least 𝑝 + 𝜀/2.

Example 2. Let 𝑓 be a function. Suppose we have an algorithm A where

Pr[𝑥 r← {0, 1}𝑛, 𝑦 r← {0, 1}𝑛 : A(𝑥,𝑦) = 𝑓 (𝑥)] = 11

12

.

We say a string 𝑦∗ ∈ {0, 1}𝑛 is “good” if

Pr[𝑥 r← {0, 1}𝑛 : A(𝑥,𝑦∗) = 𝑓 (𝑥)] ≥ 3

4

.

By an averaging argument (Lemma 1), at least a 2/3-fraction of 𝑦’s are good (i.e., set 𝜇 = 11/12 and 𝑝 = 3/4).

Namely,

Pr

[
𝑦

r← {0, 1}𝑛 : Pr[𝑥 r← {0, 1}𝑛 : A(𝑥,𝑦) = 𝑓 (𝑥)] ≥ 3/4
]
≥ 2/3.

Example 3. Let 𝑓 be a function. Suppose we have an algorithm A where

Pr[𝑥 r← {0, 1}𝑛, 𝑦 r← {0, 1}𝑛 : A(𝑥,𝑦) = 𝑓 (𝑥)] = 1

2

+ 𝜀.

We say that a string 𝑦∗ ∈ {0, 1}𝑛 is “good” if

Pr[𝑥 r← {0, 1}𝑛 : A(𝑥,𝑦∗) = 𝑓 (𝑥)] ≥ 1

2

+ 𝜀

2

.

By an averaging argument (Corollary 3), at least an 𝜀-fraction of 𝑦’s are good. Namely,

Pr

[
𝑦

r← {0, 1}𝑛 : Pr[𝑥 r← {0, 1}𝑛 : A(𝑥,𝑦) = 𝑓 (𝑥)] ≥ 1/2 + 𝜀/2
]
≥ 𝜀.
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