
CS 346: Introduction to Cryptography

Attacks and Reductions in Cryptography
Instructor: David Wu

In this short note, we give several examples of proofs involving PRGs and PRFs.

PRG security. Let’s begin by reviewing the PRG security game:

The PRG security game is played between an adversary A and a challenger. Let 𝐺 : {0, 1}𝜆 → {0, 1}𝑛
be a candidate PRG. The game is parameterized by a bit 𝑏 ∈ {0, 1}:

1. If 𝑏 = 0, the challenger samples a seed 𝑠
r← {0, 1}𝜆 and computes 𝑡 ← 𝐺 (𝑠). If 𝑏 = 1, the

challenger samples a random string 𝑡 r← {0, 1}𝑛 .
2. The challenger gives 𝑡 to A.
3. At the end of the game, A outputs a bit 𝑏′ ∈ {0, 1}.

For an adversary A, we define its PRG distinguishing advantage PRGAdv[A,𝐺] to be the quantity

PRGAdv[A,𝐺] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | .

Finally, we say that a a PRG 𝐺 is secure if for all efficient adversaries A,

PRGAdv[A,𝐺] = negl(𝜆) .

We will often refer to this game (also called an “experiment”) where 𝑏 = 0 as PRGExp0 [A,𝐺] and the game
where 𝑏 = 1 as PRGExp1 [A,𝐺]. In this case, we can also write

PRGAdv[A,𝐺] =
��Pr [A outputs 1 in PRGExp0 [A,𝐺]

]
− Pr

[
A outputs 1 in PRGExp1 [A,𝐺]

] �� .
Example 1 (An Insecure PRG). Suppose 𝐺 : {0, 1}𝜆 → {0, 1}𝑛 is a secure PRG and define 𝐺 ′ : {0, 1}𝜆 →
{0, 1}𝑛+𝜆 to be 𝐺 ′(𝑠) = 𝐺 (𝑠)∥𝑠 . We show that 𝐺 ′ is not a secure PRG.

Proof. We construct an adversary A for 𝐺 ′ as follows:

1. On input 𝑡 ∈ {0, 1}𝑛+𝜆 , A parses the input as 𝑡 = 𝑡1∥𝑡2 where 𝑡1 ∈ {0, 1}𝑛 and 𝑡2 ∈ {0, 1}𝜆 .
2. Output 1 if 𝐺 (𝑡2) = 𝑡1 and 0 otherwise.

By construction, algorithm A is efficient (i.e., runs in polynomial time). We compute A’s distinguishing
advantage:

• Suppose 𝑏 = 0. In this case, 𝑡 ← 𝐺 ′(𝑠) where 𝑠 r← {0, 1}𝜆 . By construction of 𝐺 ′, 𝑡 = 𝑡1∥𝑡2 where
𝐺 (𝑡2) = 𝑡1. In this case, the adversary outputs 1 with probability 1.

• Suppose 𝑏 = 1. In this case, 𝑡 r← {0, 1}𝑛+𝜆 . In particular, 𝑡1 and 𝑡2 are independently uniform, so
Pr[𝑡1 = 𝐺 ′(𝑡2)] = 1/2𝑛 .

1

The distinguishing advantage of A is then

PRGAdv[A,𝐺 ′] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = 1 − 2−𝑛,

which is non-negligible. □

Example 2 (A Secure PRG). Suppose 𝐺 : {0, 1}𝜆 → {0, 1}𝑛 is a secure PRG and define the function
𝐺 ′ : {0, 1}𝜆 → {0, 1}𝑛 to be the function 𝐺 ′(𝑠) = 𝐺 (𝑠) ⊕ 1𝑛 . Namely, 𝐺 ′ simply flips the output bits of 𝐺 .
We show that if 𝐺 is secure, then 𝐺 ′ is also secure.

Proof. When proving statements of this form, we will prove the contrapositive:

If 𝐺 ′ is not a secure PRG, then 𝐺 is not a secure PRG.

To prove the contrapositive, we begin by assuming that𝐺 ′ is not a secure PRG.Thismeans that there exists an
efficient adversaryA that breaks the security of𝐺 ′ with non-negligible advantage 𝜀 (i.e., PRGAdv[A,𝐺 ′] =
𝜀). We use A to construct an efficient adversary B that breaks the security of 𝐺 :1

1. At the beginning of the game, algorithm B receives a challenge 𝑡 r← {0, 1}𝑛 from the challenger.
We are constructing an adversary for the PRG security game for 𝐺 . This game begins with the
challenger sending a challenge 𝑡 ∈ {0, 1}𝑛 to the adversary where either 𝑡 ← 𝐺 (𝑠) or 𝑡 r← {0, 1}𝑛 .

2. Algorithm B starts running algorithm A. Essentially, we are constructing a reduction here. Our
goal is to reduce the problem of distinguishing 𝐺 to the problem of distinguishing 𝐺 ′. To do this,
we will rely on our adversary A for distinguishing 𝐺 ′.

3. Algorithm B sends 𝑡 ⊕ 1𝑛 to A and outputs whatever A outputs. Algorithm A is an adversary
for 𝐺 ′, so it expects a single input 𝑡 ∈ {0, 1}𝑛 where either 𝑡 ← 𝐺 ′(𝑠) or 𝑡 r← {0, 1}𝑛 . Note
that this is the only setting for which we have guarantees on the behavior of A. The behavior
of algorithm A on a string drawn from some other distribution is undefined. As part of our
analysis, we need to argue that B correctly simulates the view of A in the PRG distinguishing
game against 𝐺 ′.

First, if A is efficient, then B is also efficient (by construction). It suffices to compute the distinguishing
advantage of algorithm B. We consider two cases:

• Suppose 𝑏 = 0. Then, B receives a string 𝑡 ← 𝐺 (𝑠) where 𝑠 r← {0, 1}𝜆 . In this case, 𝑡 ⊕ 1𝑛 is precisely
the value of 𝐺 ′(𝑠). Namely, B has simulated PRGExp0 [A,𝐺 ′] for A. Since A is a distinguisher for
𝐺 ′, this means that

Pr [B outputs 1 | 𝑏 = 0] = Pr
[
A outputs 1 in PRGExp0 [A,𝐺 ′]

]
.

• Suppose 𝑏 = 1. Then, B receives a random string 𝑡
r← {0, 1}𝑛 . Since 𝑡 is uniformly random over

{0, 1}𝑛 , the string 𝑡 ⊕ 1𝑛 is also uniformly random over {0, 1}𝑛 . This means that B has simulated
PRGExp1 [A,𝐺 ′] for A. This means that

Pr [B outputs 1 | 𝑏 = 1] = Pr
[
A outputs 1 in PRGExp1 [A,𝐺 ′]

]
.

1In the following description, we provide some clarifying remarks in green. These remarks are unnecessary in a formal proof.

2

We conclude now that the distinguishing advantage of B is exactly

PRGAdv[B,𝐺] = |Pr [B outputs 1 | 𝑏 = 0] − Pr [B outputs 1 | 𝑏 = 1] |
=
��Pr [A outputs 1 in PRGExp0 [A,𝐺 ′]

]
− Pr

[
A outputs 1 in PRGExp1 [A,𝐺 ′]

] ��
= PRGAdv[A,𝐺 ′] = 𝜀,

which is non-negligible by assumption. □

PRF security game. Next, we review the definition of a secure PRF. Let 𝐹 : K × X → Y be a function
with key-space K , domain X, and range Y. The PRF security game is defined as follows:

The PRF security game is played between an adversary A and a challenger. Let 𝐹 : K × X → Y be a
candidate PRF. The game is parameterized by a bit 𝑏 ∈ {0, 1}:

1. If 𝑏 = 0, then the challenger samples a key 𝑘 r← K and sets 𝑓 ← 𝐹 (𝑘, ·). If 𝑏 = 1, the challenger
samples a uniformly random function 𝑓

r← Funs[X,Y].
2. The adversary chooses 𝑥 ∈ X and sends 𝑥 to the challenger.
3. The challenger replies with 𝑓 (𝑥).
4. The adversary can continue to make queries to the adversary (repeating steps 2 and 3). At the

end of the game, adversary outputs a bit 𝑏′ ∈ {0, 1}.

For an adversary A, we define the PRF distinguishing advantage PRFAdv[A, 𝐹] to be the quantity

PRFAdv[A, 𝐹] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | .

We say that a PRF 𝐹 is secure if for all efficient adversaries A,

PRFAdv[A, 𝐹] = negl(𝜆),

where 𝜆 is a security parameter (typically, the keys of the PRF are poly(𝜆) bits long: log |K | = poly(𝜆)). Sim-
ilar to the case with PRGs, we will often refer to the game (or “experiment”) where 𝑏 = 0 as PRFExp0 [A, 𝐹]
and the game where 𝑏 = 1 as PRFExp1 [A, 𝐹]. In this case, we can write

PRFAdv[A, 𝐹] =
��Pr [A outputs 1 in PRFExp0 [A, 𝐹]

]
− Pr

[
A outputs 1 in PRFExp1 [A, 𝐹]

] �� .
Example 3 (An Insecure PRF). Suppose 𝐹 : {0, 1}𝑛×{0, 1}𝑛 → {0, 1}𝑛 is a secure PRF and define 𝐹 ′ : {0, 1}𝑛×
{0, 1}𝑛 → {0, 1}𝑛 to be 𝐹 ′(𝑘, 𝑥) = 𝐹 (𝑘, 𝑥) ⊕ 𝐹 (𝑘, 𝑥 ⊕ 1𝑛). We claim that 𝐹 ′ is not a secure PRF.

Proof. We construct an adversary A for 𝐹 ′ as follows:

1. Submit the query 𝑥1 = 0𝑛 to the challenger. The challenger replies with a value 𝑦1.
2. Submit the query 𝑥2 = 1𝑛 to the challenger. The challenger replies with a value 𝑦2.
3. Output 1 if 𝑦1 = 𝑦2 and 0 otherwise.

By construction, A is efficient (i.e., runs in polynomial time). We compute A’s distinguishing advantage:

3

• Suppose 𝑏 = 0. In this case, the challenger samples 𝑘 r← {0, 1}𝑛 and replies with

𝑦1 = 𝐹 ′(𝑘, 𝑥1) = 𝐹 (𝑘, 𝑥1) ⊕ 𝐹 (𝑘, 𝑥1 ⊕ 1𝑛) = 𝐹 (𝑘, 0𝑛) ⊕ 𝐹 (𝑘, 1𝑛)
𝑦2 = 𝐹 ′(𝑘, 𝑥2) = 𝐹 (𝑘, 𝑥2) ⊕ 𝐹 (𝑘, 𝑥2 ⊕ 1𝑛) = 𝐹 (𝑘, 1𝑛) ⊕ 𝐹 (𝑘, 0𝑛) .

In this case 𝑦1 = 𝑦2, and A outputs 1 with probability 1.

• Suppose 𝑏 = 1. In this case, the challenger samples 𝑓
r← Funs[{0, 1}𝑛, {0, 1}𝑛] and replies with

𝑦1 = 𝑓 (𝑥1) and 𝑦2 = 𝑓 (𝑥2). Since 𝑥1 ≠ 𝑥2, 𝑦1 and 𝑦2 are independent and uniformly random. Thus,
Pr[𝑦1 = 𝑦2] = 1/2𝑛 .

The distinguishing advantage of A is then

PRFAdv[A, 𝐹 ′] = |Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = 1 − 2−𝑛,

which is non-negligible. □

Example 4 (A Secure PRF). Suppose 𝐹 : K×X → {0, 1}𝑛 is a secure PRF. Then, the function 𝐹 ′ : K2×X →
{0, 1}𝑛 where 𝐹 ′((𝑘1, 𝑘2), 𝑥) = 𝐹 (𝑘1, 𝑥) ⊕ 𝐹 (𝑘2, 𝑥) is also a secure PRF.

Proof. Similar to the case with PRGs, we will prove the contrapositive:

If 𝐹 ′ is not a secure PRF, then 𝐹 is not a secure PRF.

To prove the contrapositive, we begin by assuming that 𝐹 ′ is not a secure PRF.This means that there exists an
efficient adversaryA that breaks the security of 𝐹 ′ with non-negligible advantage 𝜀 (i.e., PRFAdv[A, 𝐹 ′] = 𝜀).
We use A to construct an adversary B that breaks the security of 𝐹 :

1. Choose a key 𝑘2 r← K .
2. Start running the adversary A for 𝐹 ′.

(a) Whenever A makes a query 𝑥𝑖 ∈ X, forward the query to the challenger to obtain a value
𝑦𝑖 ∈ {0, 1}𝑛 . Give 𝑦𝑖 ⊕ 𝐹 (𝑘2, 𝑥𝑖) to A.

3. Output whatever A outputs.

Observe that the number of queries B makes is the same as the number of queries that A makes. Thus, if
A is efficient, then B is also efficient. It suffices to compute the distinguishing advantage of algorithm B.
We consider two cases:

• Suppose 𝑏 = 0. In this case, the challenger in PRFExp0 [B, 𝐹] samples a key 𝑘 r← K and replies with
𝑦𝑖 ← 𝐹 (𝑘, 𝑥𝑖) on each query. Algorithm B in turns replies to A with the value

𝑦𝑖 ⊕ 𝐹 (𝑘2, 𝑥𝑖) = 𝐹 (𝑘, 𝑥𝑖) ⊕ 𝐹 (𝑘2, 𝑥𝑖) = 𝐹 ′((𝑘, 𝑘2), 𝑥𝑖) .

Since 𝑘 and 𝑘2 are both sampled uniformly and independently from K , algorithm B answers all of
A’s queries according to the specification of PRFExp0 [A, 𝐹 ′]. Thus,

Pr [B outputs 1 | 𝑏 = 0] = Pr
[
A outputs 1 in PRFExp0 [A, 𝐹 ′]

]
.

4

• Suppose 𝑏 = 1. In this case, the challenger in PRFExp1 [B, 𝐹] samples 𝑓 r← Funs[X, {0, 1}𝑛] and
replies with𝑦𝑖 ← 𝑓 (𝑥𝑖) on each query. AlgorithmB in turn replies toA with the value𝑦𝑖⊕𝐹 (𝑘2, 𝑥𝑖) =
𝑓 (𝑥𝑖)⊕𝐹 (𝑘2, 𝑥𝑖). Since 𝑘2 is independent of 𝑓 , and 𝑓 is a random function, the value of 𝑓 (𝑥𝑖)⊕𝐹 (𝑘2, 𝑥𝑖)
is uniform and independently random over {0, 1}𝑛 . Thus, algorithm B answers all of A’s queries
according to the specification of PRFExp1 [A, 𝐹 ′], and so

Pr [B outputs 1 | 𝑏 = 1] = Pr
[
A outputs 1 in PRFExp1 [A, 𝐹 ′]

]
.

By definition, the distinguishing advantage of B is then

PRFAdv[B, 𝐹] = |Pr [B outputs 1 | 𝑏 = 0] − Pr [B outputs 1 | 𝑏 = 1] | = PRFAdv[A, 𝐹 ′] = 𝜀,

which is non-negligible by assumption. □

5

