CS 6501 Week 14: Advanced Lattice-Based Primitives

So far, we have seen how to leverage lattice homomorphisms to get homomorphic encryption and homomorghic signatures. This week, we will continue and look at another primitive that makes use of homomorphism: attribute-bared encryption

Attribute-based encryption: Generalization of identity-baced encryption:

- Ciphertexts are associated with an attribute x and a message $m \quad\left\{\begin{array}{c}\text { decryption recovers in if } f(x)=1 \\ \text { and otherwise, }\end{array}\right.$
- Secret keys are associated with functions f and otherwise, eiplertexts are semantically secure
- Useful notion for enforcing access control (eeg., attribute might be "CONFIDENTIAL" and "TOP-SECRET") and decryption bey corresponds to access level

Schema: Setup $\left(1^{\lambda}\right) \rightarrow$ (mp, mask)

$$
\begin{aligned}
& \operatorname{KeyGen}(m s k, c) \rightarrow \text { sk }_{c} \\
& \text { Encrypt }(m p k, x, m) \rightarrow c t \\
& \operatorname{Decrypt}\left(s k_{f}, c t\right) \rightarrow m / \perp
\end{aligned}
$$

Correctness: for any attribute x and circuit C where $C(x)=1$,

$$
\begin{aligned}
& (m p k, m s k) \leftarrow \operatorname{Setup}\left(1^{\lambda}\right) \\
& s k_{c} \leftarrow \operatorname{Key} \operatorname{Gen}(m s k, c) \\
& c t \leftarrow \operatorname{Encrapt}(m p k, x, m)
\end{aligned} \quad \rightarrow \operatorname{Pr}\left[\operatorname{Decrppt}\left(s k_{c}, c t\right)=m\right]=1
$$

Semantic Security:
adversary

Requirement: $C(x)=0$ for all circuits queried by the adversary

Selective Security: Adversary commits to the challenge attribute X^{*} at the beginning of the security game
\rightarrow Selective security implies adaptive security via technique called "complexity leveraging" [reduction guesses the challenge attribute at the beginning of the game] - this incurs a subexponential loss in the security reduction so will require a subexporential hardness assumption:

$$
\text { Adaptive Adv }[B] \leqslant \frac{1}{2^{2}} \text { Selective } A d v[A]
$$

where l is the attribute length

Starting point: dual version of Regex's encryption (interchange ciphertexts with secret lay):
$-\operatorname{Setup}\left(1^{\lambda}\right):$ Sample $A \stackrel{R}{\mathbb{Z}} \mathbb{Z}_{q}^{n \times m}, r \leftarrow\{0,1\}^{m}$ and compute $u \leftarrow \operatorname{Ar} \in \mathbb{Z}_{q}^{n}$

$$
\left[\begin{array}{l}
\text { we can abs sample } \left.\left(A,+d_{A}\right) \leftarrow \operatorname{TrapGen}\left(1^{\lambda}\right)\right) \\
u \leqslant \mathbb{Z}_{\xi}^{n} \text { and } r \leftarrow f_{A}^{\prime}\left(+d_{A}, u\right)
\end{array}\right]
$$

Output $p k=(A, u)$ and $s k=r$

- Encrypt $(p k, \mu):$ Sample $s \leftarrow \mathbb{Z}_{q}^{n}, e \leftarrow x^{m}, e^{\prime} \leftarrow x$ and output $c t=\left(s^{\top} A+e^{\top}, s^{\top} u+e^{\prime}+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)$
- Decrypt(sk,ct): Output $\left\langle c t_{1}-\left\langle c t_{0}, r\right\rangle\right\rangle_{2}$

Correctness:

$$
\begin{aligned}
c t_{1}-\left\langle c t_{0}, r\right\rangle & =s^{\top} u+e^{\prime}+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor-s^{\top} A r-e^{\top} r \\
& =s^{\top} A r+e^{\prime}+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor-s^{\top} A r-e^{\top} r=\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor+e^{\prime}-e^{\top} r
\end{aligned}
$$

Correct as long as $\left|e^{\prime}-e^{\top} r\right|<\frac{q}{4}$

Security: By LHL, public key statistically indistinguishable from sampling $A \stackrel{R}{\mathbb{R}} \mathbb{E}_{\hat{q}}^{n \times m}, u \stackrel{R}{\leftarrow} \mathbb{Z}_{\hat{q}}^{n}$
Then,

$$
\left(s^{\top} A+e^{\top}, s^{\top} u+e^{\prime}+\mu \cdot\left[\frac{q}{2}\right\rfloor\right) \approx\left(r, r^{\prime}\right)
$$

where $r \& \mathbb{Z}_{q}^{m}, r^{\prime} \leftarrow \mathbb{Z}_{q}$ by $L D E$.

Comparison with standard (ie., primal) Regev:

Trapdoor extension: 1. Suppose we have a gadget trapdoor $R \in \mathbb{Z}_{q}^{m \times m}$ for $A \in \mathbb{Z}_{q}^{n \times m} \quad$ (i.e., $A R=G$).
Then, $\left[\frac{R}{0}\right]$ is a trapdoor for any extension $\left[A \mid A_{1}\right]$ of $A:\left[A \mid A_{1}\right]\left[\frac{R}{0}\right]=A R=G$.
2. For a matrix $A \in \mathbb{Z}_{q}^{n \times M}$ and $u=A R+G \in \mathbb{Z}_{\delta}^{n \times m}$, then $\left[\frac{-R}{I}\right]$ is a trapdoor for $[A \mid u]$:

$$
[A \mid u]^{0}\left[\frac{-R}{I}\right]=-A R+U=-A R+A R+G=G
$$

Useful observation: Two possible trapdoors for a lattice $\left[A \mid A_{1}\right]$: either know a trapdoor for A or know a short R such that $A_{1}=A R+G$
This is a useful tool in many security proofs relying on the "puncturing"technigue

- Real scheme will use the trapdoor for A
- Reduction (simulation) will set up parameters so it knows R such that $A_{1}=A R+G$
\rightarrow Since reduction likely will reduce to LWE (and no trapdoor is provided!)

We will write Sample Left $\left(A, A_{1}, I_{A}, v, \beta\right)$ to denote an algorithm that sample a pre-imeye u such that

$$
\left[A \mid A_{1}\right] u=v \text { and }\|u\| \leqslant \beta
$$

We will write SampleRight (A, B, R, v, β) to denote an algorithm that samples a pre-imege u such that $[A \mid B] u=v$ and $\|u\| \leqslant \beta$
provided that $B=A R+G$. In both cases, the allowable value of β depends on the quality of the trapdoor (td A_{A} or R)

We start with an abstraction for the homomorphic operations we have examined so for.

Matrix embeddings: Let $A_{1}, \ldots, A_{l} \in \mathbb{Z}_{q}^{n \times m}$. Take $x \in\{0,1\}^{l}$. We can "encode" x as follows:

$$
\begin{gathered}
v_{1}=s^{\top}\left(A_{1}+x_{1} G\right)+e_{1}^{\top} \\
\vdots \\
v_{l}=s^{\top}\left(A_{l}+x_{l} G\right)+e_{l}^{\top}
\end{gathered}
$$

Addition: Given $v_{i}=s^{\top}\left(A_{i}+x_{i} G\right)+e_{i}^{\top}$

Multiplication: Given

$$
\begin{aligned}
& v_{i}=s^{\top}\left(A_{i}+x_{i} G\right)+e_{i}^{\top} \\
& v_{j}=s^{\top}\left(A_{j}+x_{j} G\right)+e_{j}^{\top}
\end{aligned} \Rightarrow \underbrace{v_{i}+v_{j}}_{v_{+}}=s^{\top}(\underbrace{\left(A_{i}+A_{j}\right)}_{A_{+}}+\left(x_{i}+x_{j}\right) G)+\underbrace{}_{e^{\top}+e_{j}^{\top}}
$$

$$
\begin{aligned}
v_{i}=s^{\top}\left(A_{i}+x_{i} G\right)+e_{i}^{\top} \Rightarrow x_{j} x_{j} v_{i}-v_{j} G^{-1}\left(A_{i}\right) & =s^{\top}\left(x_{j} A_{i}+x_{i} x_{j} G\right)+x_{j} e_{i}^{\top}-s^{\top}\left(A_{j} G^{-}\left(A_{i}\right)+x_{j} A_{i}\right)+e_{j}^{\top} G^{1}\left(A_{i}\right) \\
v_{j}=s^{\top}\left(A_{j}+x_{j} G\right)+e_{j}^{\top} & =s^{\top}\left(-A_{j} G^{-1}\left(A_{i}\right)+x_{i} x_{j} \cdot G\right)+x_{j} e_{i}^{\top}+e_{j}^{\top} G^{-1}\left(A_{i}\right)
\end{aligned}
$$

Using these elementary operations, we can define functions

$$
\begin{aligned}
& \operatorname{EvalPK}\left(C, A_{1}, \ldots, A_{l}\right) \rightarrow A_{c} \\
& \operatorname{EvalCT}\left(C, A_{1}, \ldots, A_{l}, v_{1}, \ldots, v_{l}, x_{1}, \ldots, x_{l}\right) \rightarrow v_{c}
\end{aligned}
$$

such that: for any collection of matrices $A_{1}, \ldots, A_{l} \in \mathbb{Z}_{q}^{n \times m}$, if

$$
v_{i}=s^{\top}\left(A_{i}+x_{i} G\right)+e_{i}^{T} \text { for all } i \in[l],
$$

then if we take

$$
\begin{aligned}
& A_{c} \leftarrow \operatorname{EvalPK}\left(C, A_{1}, \ldots, A_{l}\right) \\
& v_{c} \leftarrow \operatorname{EvalCT}\left(C, A_{1}, \ldots, A_{l}, v_{1}, \ldots, v_{l}, x_{1}, \ldots, x_{l}\right),
\end{aligned}
$$

it follows that

$$
v_{c}=s^{\top}\left(A_{c}+C(x) \cdot G\right)+e_{c}^{\top}
$$

Next, if $A_{i}=A R_{i}-x_{i} G$, then observe that

$$
\left.\begin{array}{rl}
-A_{i}+A_{j} & =A\left(R_{i}+R_{j}\right)-\left(x_{i}+x_{j}\right) \cdot G \\
--A_{j} G^{-1}\left(A_{i}\right) & =-A R_{j} G^{-1}\left(A_{i}\right)+x_{j} A_{i} \\
& =-A R_{j} G^{-1}\left(A_{i}\right)+x_{j} A R_{i}-x_{i} x_{j} G \\
& =A(\underbrace{\left.-R_{j} G^{-1}\left(A_{i}\right)+x_{j} R_{i}\right)}_{R_{x}}-x_{i} x_{j} G
\end{array}\right\}
$$

if $A_{c} \leftarrow \operatorname{EvalPK}\left(C, A_{1}, \ldots, A_{\ell}\right)$, then $A_{c}=A R_{c}-C(x) \cdot G$
τ function of $C, A, R_{1}, \ldots, R_{l}$, and x

ABE from latices: - use matrix encoding to encode attributes:
We will use the conversion that
looks like part of a dual Regex encryption (with quabic ley A_{c})

- encrypt a message μ with respect to vector u (egg., dual Reeve style)

$$
s^{\top} u+e^{\prime}+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor
$$

- Ciphertext is essentially dual Regor encryption with respect to A_{c} and $u ;$ to decrypt, we need to give out a short vector r_{c} such that $u=A_{c} r_{c}$ - seems challenging unless we have a trapdare for A_{c}
- will use basis extension to make this easier: instead of encrypting to $A_{c,}$ we instead encrypt with respect to $\left[A \mid A_{c}\right]$ and let master secure key be trapdoor for A (which can be used to generate trapdoors for $\left[A \mid A_{C}\right]$ - there will be the ABE decryption keys

$$
\begin{array}{lll}
\operatorname{Setup}\left(1^{\lambda}\right): \operatorname{Sample} & \left(A,+d_{A}\right) \leftarrow \operatorname{Trapben}\left(1^{\lambda}\right) \\
& A_{1}, \ldots, A_{l} \mathbb{R}^{R} \mathbb{Z}_{l}^{\text {nm }} \quad & \\
& m_{p k}:\left(A, A_{1}, \ldots, A_{l}, u\right) \\
& \mathbb{Z}_{l}^{n} & m s k:+d_{A}
\end{array}
$$

Encrypt (mpk, $x, \mu)$: Sample $s^{2} \mathbb{Z}_{q}^{n}, e_{1}, e_{1}, \ldots, e_{e} \leftarrow x^{m}, e^{\prime} \leftarrow x$ and compute

$$
v=s^{\top} A+e^{\top}
$$

$$
v_{1}=s^{\top}\left(A_{1}+x_{1} G\right)+e_{1}^{\top}
$$

$$
V_{l}=s^{\top}\left(A_{l}+x_{l} G\right)+e_{l}^{\top}
$$

$$
v^{\prime}=s^{\top} u+e^{\prime}+\mu \cdot\left[\frac{a}{2}\right\rfloor \quad c t:\left(v, v_{1}, \ldots, v_{l}, v^{\prime}, x\right)
$$

$$
\operatorname{KeyGen}(\text { mask, } C): \quad A_{c} \leftarrow \operatorname{EralPK}\left(C, A_{1}, \ldots, A_{l}\right)
$$

output $r_{c} \leftarrow \operatorname{SampleLeft}\left(A, A_{c},+d_{A}, u, \beta\right) \quad$ [β is sore bound chosen to sooty correctness and security] $\left[\right.$ in particular $\left[A \mid A_{c}\right] r_{c}=u$
Decrypt $\left(\right.$ sk $\left._{c}, c t\right)$: if $C(x)=1$, output \perp

$$
v_{c}^{\top} \leftarrow \operatorname{Eralct}\left(C, A_{1}, \ldots, A_{l}, v_{1}, \ldots, v_{l}, x_{1}, \ldots, x_{l}\right)
$$

output $\left\langle v^{\prime}-\left[v^{\top} \mid v_{c}^{\top}\right] r_{c}\right]_{2}$
Correctness: Take any $x \in\{0,1\}^{\ell}$ and circuit $c:\{0,1\}^{\ell} \rightarrow\{0,1\}$ where $c(x)=0$. Consider decrypting a valid ciphentact with attribute x and message μ. Then,

Correct as long as $|\tilde{e}|<\frac{9}{4}$

$$
\begin{aligned}
& v=s^{\top} A+e^{\top} \\
& V_{c}=s^{\top}\left(A_{c}+C(x) \cdot G\right)+e_{c}^{\top}=s^{\top} A_{c}+e_{c}^{\top} \\
& \Rightarrow\left[v^{\top} \mid v_{c}^{\top}\right] r_{c}=s^{\top}\left[A \mid A_{c}\right] r_{c}+\left[e^{\top} \mid e_{c}^{\top}\right] r_{c} \\
& =s^{\top} u+\left[e^{\top} \mid e_{c}^{\top}\right] r_{c} \\
& \Rightarrow v^{\prime}-\left[v^{\top} \mid v_{c}^{\top}\right] r_{c}=s^{\top} u+e^{\top}+\mu \cdot\left[\frac{q}{2}\right\rfloor-s^{\top} u-\left[e^{\top} \mid e_{c}^{\top}\right] r_{c} \\
& =\mu \cdot\left\lfloor\frac{1}{2}\right\rfloor+\underbrace{e^{\prime}-\left[e^{\top} \mid e_{c}^{\top}\right] r_{c}}_{\tilde{e}} \\
& \gamma \\
& \text { bounded by } \\
& \text { (quality of trapdoor) }
\end{aligned}
$$

$$
\begin{aligned}
& \left.v_{1}=s^{\top}\left(A_{1}+x_{1} G\right)+e_{1}^{\top}\right\} \text { enables computation of } \\
& S^{T}\left(A_{c}+C(x) \cdot G\right)+e_{c}^{T} \Rightarrow \text { if } C(x)=0 \text {, this becomes } \\
& s^{\top} A_{c}+e_{c}^{\top}
\end{aligned}
$$

Security: Give a reduction to $L W E$. High level idea:

- Use LWE to argue that ciphertext components are uniformly random:

$$
\begin{aligned}
& s^{\top} A+e^{\top} \\
& s^{\top}\left(A_{1}+x_{l}^{*} G\right)+e_{1}^{\top} \\
& \vdots \\
& s^{\top}\left(A_{l}+X_{l}^{*} G\right)+e_{l}^{\top} \\
& s^{\top} u+e^{\top}+\mu \cdot\left\lfloor\frac{7}{2}\right\rfloor
\end{aligned}
$$

] observe: $A_{1} A_{1}, \ldots, A_{l}, u$ are randoms so

$$
s^{\top}\left[A\left|A_{1}\right| \cdots\left|A_{l}\right| u\right]+\left[e^{\top}, e_{1}^{\top}|\cdots| e_{l}^{\top} \mid e^{\prime}\right]
$$

will appear indistinguishable from uniform under LWE
problem: how do we simulate the decryption keys (we do not know trapdoor for A)

- Proof technique will rely on the "puncturing" technique that will allow us to generate keys for all admissible functions f where $f\left(x^{*}\right)=0\left[x^{*}\right.$ is the challenge attribute $]$ and does not require trapdoor for A
- Will consider selective security game where A chooses its attribute in advance (implies adaptive security via complexity leveraging - though relies on subexponential hardness assumption) - major open problem is to obtain adaptive security without complexity leveraging/subexponential hardness

We use a hybrid argument:
Hy bo: Real game
Hyp: After adversary commits to x^{*}, we set public parameters as follows:

$$
\begin{aligned}
& A \stackrel{R}{\mathbb{R}} \mathbb{Z}_{q}^{n \times m} \quad R_{1}, \ldots, R_{l} \leftarrow \\
& A_{1} \leftarrow A R_{1}-x_{1}^{*} G \in \mathbb{Z}_{q}^{n \times m} \\
& \vdots \\
& A_{l} \leftarrow A R_{l}-x_{l}^{*} G \in \mathbb{Z}_{q}^{n \times m} \\
& u \stackrel{R}{\&} \mathbb{Z}_{q}^{n}
\end{aligned}
$$

For challenge ciphertext, compute

$$
\begin{aligned}
& {\left[v\left|v_{1}\right| \cdots \mid v_{l}\right]=s^{\top} A\left[I\left|R_{1}\right| \cdots \mid R_{l}\right]+e^{T}\left[I\left|R_{1}\right| \cdots \mid R_{l}\right]} \\
& v^{\prime}=s^{\top} u+e^{\prime}+\mu \cdot\left\lfloor\frac{q}{2}\right]
\end{aligned}
$$

Hy b_{2} : Switch challenge ciphertext to uniformly random vectors:

$$
\begin{aligned}
& v, v_{1}, \ldots, v_{l} \leftarrow \mathbb{Z}_{q}^{m}, v^{\prime} \leftrightarrow \mathbb{Z}_{q} \\
& c t=\left(v, v_{1}, \ldots, v_{l}, x^{*}\right)
\end{aligned}
$$

Hypo and $H_{y} b_{1}$ are statistically indistinguishable by $L H L$. Namely, $\left(A, A R_{1}, \ldots, A R_{l}\right) \stackrel{s}{\approx}\left(A, U_{1}, \ldots, U_{l}\right)$ if $A, U_{1}, \ldots, U_{l}{ }^{R} Z_{q}^{n \times m}$ and $R_{1}, \ldots, R_{l} e^{e^{R}}\{ \pm 1\}^{m \times m}$ and $m \geqslant 3 n \log q$.
\longrightarrow Strictly speaking, we require a generalization of the $L H L$ that says that $\left(A, A R, e^{\top} R\right) \approx\left(A, U, e^{\top} R\right)$
$H_{y} b_{1}$ and $H_{y} b_{2}$ are computationally indistinguishable by LWE. Suppose there is an adversary A that can distinguish Hyb1 and Hybz. We use A to construct an ofgoithm B for $\angle W E$:

1. Algorithm B receives an $L D E$ challenge $\left([A \mid u],\left[b \mid b^{\prime}\right]\right) \mathbb{Z}_{q}^{n \times(m+1)} \times \mathbb{Z}_{q}^{m+1}$ where $\hat{b}^{T}=s^{\top} A+e^{\top}$ or $b^{R} b^{R} \mathbb{Z}_{q}^{m}$.
2. Let x^{*} be the attribute A chooses for the semantic security game.

$$
b^{\prime}=s^{\top} u+e^{\prime} \quad b^{\prime} \& z_{q}^{6}
$$

3. Algorithm B samples $R_{1}, \ldots, R_{l} \stackrel{R}{R}_{\leftarrow}^{\{ \pm 1\}^{m \times m}}$ and sets $A_{i} \leftarrow A R_{i}-x_{i}^{*} G$ and sets the mpk as $\left(A, A_{1}, \ldots, A_{l}, u\right)$ and gives mpk to A.
4. Suppose A makes a key-generation query on a circuit C. It must be the case that $C\left(x^{*}\right)=1$. This means that

$$
\begin{aligned}
A_{c} & =\operatorname{EvalPK}\left(C, A_{1}, \ldots, A_{l}\right) \\
& =\operatorname{EvalPK}\left(C, A R_{1}-x_{1}^{*} G, \ldots, A R_{l}-x_{l}^{*} G\right)
\end{aligned}
$$

$$
\left.=A R_{c}+C\left(x^{*}\right) \cdot G\right\} \text { This will allow the reduction to sample keys whenever } C\left(x^{*}\right)=1 \text {, but not when } C\left(x^{*}\right)=0 \text {. }
$$

$$
=A R_{c}+G \quad \text { [known as the "puncturing" technique - we have a trap dor that works sometimes] }
$$

By design, R_{c} is small. To simulate a key, algorithm B needs to compute a short r_{c} such that $\left[A \mid A_{c}\right] r_{c}=u$. This is possible since B knows R_{c} such that $A_{c}=A R_{c}+G$ so B computes $r_{c} \leftarrow \operatorname{Sample}$ Right $\left(A, A_{c}, R_{c}, u, \beta\right)$, which is indistinguishable from a real key (output by the actual Key ben algorithm)
5. For the challenge ciphertext, set

$$
v=b \text { and } v_{i}=b^{\top} R_{i} \text { for } i \in[l]
$$

$$
v^{\prime}=b^{\prime}+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor
$$

and output $c t=\left(v_{1}, v_{1}, \ldots, v_{l}, v^{\prime}\right)$.
Two possibilities: - Suppose $b^{\top}=s^{\top} A+e^{\top}$ and $b^{\prime}=s^{\top} u+e^{\prime}$. Then,

$$
\begin{aligned}
v_{i}=\left(s^{\top} A+e^{\top}\right) R_{i} & =s^{\top} A R_{i}+e^{\top} R_{i} \\
& =s^{\top}\left(A_{i}+x_{i}^{*} G\right)+e^{\top} R_{i}
\end{aligned}
$$

Thus, ciphertexts distributed exactly as in Hybl.

- Suppose b^{\top} and b^{\prime} are uniformly random. Then, by LHL, all of the v_{i} are uniform over \mathbb{Z}_{q}^{m} and the ciphertext is distributed according to the specification in Hybz.
Thus, assuming LWE, Hyb1 and Hybe is computationally indistinguishable.

