
CS650lwee.ly 4 : Advanced Lattice - Based Primitives1-

So far
,

we have seen how to leverage lattice homomorphisms to get homeomorphic encryption and homeomorphic signatures . This week
,

we will continue and look at another primitive that makes use of homomorphism : attribute - based
encryption

Attribute-basedencryption_ : Generalization of identity - based encryption
:

-

Ciphertext are associated with an attribute x and a message m )
decryption recovers rn if f- ( x) -

- 1

and otherwise
, ciphertext are

-

Secret keys are associated with functions f semantically secure

-

Useful notion for enforcing access control leg. ,
attribute might be

"

CONFIDENTIAL
"

and
"

TOP - SECRET
" ) and decryption key

corresponds to access level

Imma : setup (17) → (mpk , msk)

)
Correctness : for any attribute x and circuit C where CG ) -

- 1
,

keyGen (msk ,
C) → Skc (mpk ,

msk) ← Setup CI
' )

Encrypt Cmpk , x. m ) → Ct Skc ← key Gen (msk , C)
→ Pr [Decrypt (ske ,

et) = m ) = 1

Decrypt (sky ,
et ) → m 11 Ct ←

Encrypt lmpk , x , m )

Semantic Security : bEso . B
-

t
adversary challenge

lmpk ,
msk ) ← Setup (17)

_c
.

¥V
X→ Regret : CK ) = O for all circuits queried by the

Etmp adversary

=

f
←syGc)f

b' C- for 3

Selectivity :
Adversary commits to the challenge attribute X* at the beginning of the security game
↳ selective security implies adaptive security via technique called

"

complexity leveraging
" [ reduction guesses the challenge

attribute at the beginning of the game ]
- this incurs a subexponential loss in the security reduction so

will require a sunbath hardness assumption :

Adaptive Adv EBI fate Selective Adv EA]
where l is the attribute length



Starting-point : dual version of Regev 's encryption (interchange ciphertext with secret key) : we can also sample (A.tda) ←
Trap Garth )

-

setup ( I
' ) : sample A er 2g

" 'm

,
r E 90,13M and compute a ← Are zgn

( EET and r Hola ,
u )

T

Output pk = ( A
,
u) and sk -

- r

-

Encrypt Cpk , µ ) : sample see Ign ,
e ← Xm

,
e
'

← X and output at = ( STATE
,

state 't
pi

. LII )
-

Decrypt Csk ,
et ) : Output Lct

,
- Seto

,
r >72

Corners : Ct
,

- Leto
,
r > = state '

tyre
. LEI - STAR - Er

= STAR te 't
pi

. LII - STAR - Er = pe.LI ) t e
'

- Er

Correct as long as le' - Er I < 94

Security : By LHL
, public key statistically indistinguishable from sampling A E

2g
" 'm

,
a
E
Zg

"

Then
,

( state
,

state 't p
- LEI ) E ( r

,
r
' )

where r t Igm ,
r
't
2g by LOE

.

Comparison with standard lie , primal) Regev :

primary dualtegev
→

sample r
E 10,13M

public key
:

asaiiiasiai .
" "

a
, ar

secret key : s r

ciphertext : sample r
E fo , Bm ← > sample SE Ign ,

e ← Xm
,

e
'

← X

( Ar
,
starter the

- LII ) ( state
,
start e 't m . LED

Trapdoorextension : l
. Suppose we have a gadget trapdoor R E Igm

" for A E 2g
" " ( ie

,
AR = G)

.

Then
,
IF ] is a trapdoor for any

extension [ A 1 A, ] of A : ( A 1 A , ] (F) = AR -

- G
.

2
.
For a matrix At Ign " and U -

- AR t GE 2g
"

? then (TI) is a trapdoor for [ A l U ] :

[ A l U ] I'RE] = - ART U = - AR t AR t G = G

Usefulobservation : Two possible trapdoors for a lattice [ A l A , ] : either know a trapdoor for A or

know a short R such that A ,
= AR t G

This is a useful tool in
many security proofs relying on the "

puncturing
"

technique
- Real scheme will use the trapdoor for A

- Reduction (simulation) will set up parameters so it knows R such that A ,
= ARTG

↳ Since reduction likely will reduce to LWE ( and no trapdoor is provided
! )

we will write Sample Left ( A , Ai , tda ,
v
, p) to denote an algorithm that sample a pre

- image u such that

[ A IA , ] u = v and Hull Ep
We will write SampleRight ( A , B. R ,

V
, p) to denote an algorithm that samples a pre

-image u such that

[ A l B) u
-

- V and Hull Ep
provided that B = ART G

.
In both cases

,
the allowable value of p depends on the quality of the trapdoor Gdp or R)



We start with an abstraction for the homeomorphic operations we have examined so far .

Matembed¥ : Let Ai
,

. . . , Ae E 2g
" ? Take x E 10,13? We can

" encode
"

X as follows :

v ,
= ST ( A ,

t x. G) t e'T

y

\

y

'

g

E

T
Ve = ST ( Aet xe G) t ee

TAddition : Given Vi -
- 5 ( Ait Xi G) tei

⇒ Vitry
. = ST ( ( Ait Aj ) tlxitxj ) G) t eittej'

Vj
-

- ST (Aj txj G) tent
- - TT

J Vt At

Multiplication : Given Vi
-
- 5 ( Aitxi G) te ?

⇒ g. v ; - y. G- ' ( A;) = ST (g. Ait x. g. G) txjei - 5 (Aj G-YAI) txj Ai) tej G
" (Ai)

Vj
-

- 5 ( Ajtxj G) tej TT
= si f Ajf

- ya;) t
xixj

- G) t xjeitej G-
'Mi)

Using these elementary operations , we can define functions

Eval PK ( C
,
Ai

. . . .

,
Ae) → Ac

Eval CT ( C
,
Ai

. . . .

,
Ae

,
Vi , . . .

,
ve

,
Xi . . . . , Xe) → Vc

such that : for any
collection of matrices Ai

, . . .

,
Ae C- Ign

'm

,
it

Vi = 5 ( Ait Xi G) te ? for all it HI
,

then if we take

Ac ← Eval PK (C , Ai . . . .
.
Ae)

Vc ← Eval CT (C
,
Ai

, . . . ,
Ae

,
Vi . . . .

,
Ve

,
Xi , . . . ,

Xe)
,

it follows that

Vc = ST ( Act C. ( x ) - G) tee
Next

,
if Ai = Ari - Xi G

,
then observe that

- Ait Aj = A- ( Rit Rj) - ( xitxj ) - G

-
-

AJG
" ( Ai) =

- AR " ( Ai ) t Ai

)
"t A '

← " " " " " ' A' ' " "
Al)

'

= - AR
,
- G-

' (Ai) t xjARi
-

xixj G then Ac = A Re - CG ) . G

= Al -

Rj G
- ' (Ai ) t xjRi) -

xixjG
← function of C , A , Ri . . . . ,

Re
,
and X

-

Rx



ties : -

use matrix encoding to encode attributes :

1-
we will use the convention that

V
,

= ST (A ,
t x. G) tei' Ux ) -

- o ⇒ can decrypt

ve g. (
Aei:* tee

/
" " " "

II I
. G) + e :

⇒ if CGI -
- o

,
this becomes

5Ac
looks like part of a dual Reger

- encryption (with public key Ac )

-

encrypt a message µ with respect to vector a leg. ,
dual Rege

Foyle
)

state 't
pi

. LII
-

ciphertext is essentially dual Regev encryption with respect to Ac and u ; to decrypt, we need to give out a

short vector re such that U -
- Acre -

seems challenging unless we have a trapdoor for Ac

- will use basis extension to make this easier : instead of encrypting
to Ac

,
we instead encrypt with respect to

[ A 1 Ac ] and let master secret key be trapdoor for A ( which can be used to generate trapdoors for

[ A l Ae ] - these will be the ABE decryption keys

Setup ( I
' ) : sample ( A

, tda) ← TrapGen CA)

Ai
, . . .

, Ae ⇐ 2g
" "

mpk : ( A
, Ai , . . .

, Ae ,
u )

U E Ign msk : tda

Encrypt (mpk, X , pe)
: sample s

£
Egon

,
e
,
e , . . . .

, ee
← Xm

,
e 't X and compute

✓ = STA t et
T

V
,

= s FA
,
t x. G) te 'T

,
C

: :

Ve = 5 (Aet XeG) tee
v
'

= state 't
pi

- LEI et : Giri
.

. . , ve ,
v
'

,
x )

keyGen (msk, C) : Ac ← Eval PK (C , Ai , . .

,
Ae)

output re ← Sample Left ( A , Ac , tda ,
U

, p) (
p is some bound chosen to satisfy correctness and security ]

[ in particular [ A 1 Ac ] re = U

Decrypt (skc , Ct) : if ( Cx) = I
, output t

VI ← Eval CT ( C , Ai . . . .

, Ae ,
Y

,
- - -

, Ve ,
X . . . . .

,
Xe )

output Lv ' - Evil ve ) re 72

Correctness : Take any X E fo ,Bl and circuit C : { oil 3h → so , 13 where CG ) = 0
.
Consider decrypting a valid ciphertext with attribute x

and message µ . Then ,

✓ = 5 At et

Vc = 5(Act ( Cx) . G) tea = 5 Acted
⇒ [ VIVE ) re = 5 LAI Ae] re t let lect ] re

= g Tut ( et l ee ] re
⇒

v
'

- ft Ivi ] re = state '

the
. LEI - stu - le ' lect ) re

=

µ . LET t e
'

- let lect ] re
-

[
size grows with mold

)
where d is

E the depth of the computation

Correct as long as I El < ¥ ← will be small since e
'

,
et

, et are small
,
as is re

bounded by p
J

(quality of trapdoor)



Security : Give a reduction to LWE
. High level idea :

- Use LWE to argue that ciphertext components are uniformly random :

STA t et observe : A
, Ai , . . .

,
Ae

,
u are random so

5th
, tx !G) t et s

' IA IA
,
I - - - the la ] t let

,
e ,
' l - - - leet le ' ]

will
appear indistinguishable from uniform under LWE

qui.ae ;
,

qq.gg#g/pwwem
, how do we ⇐ mate the decryption key , ↳ do no , www.yapd. . . for

A)
- Proof technique will

rely on the
"

puncturing
"

technique that will allow us to generate keys for all admissible

functions f where fG* ) -

- O ( x * is the challenge attribute ] and does not require trapdoor for A

- Will consider selectivesecurity game where A chooses its attribute in advance (implies adaptive security via

complexity leveraging
- though relies on subexponential hardness assumption) -

major open problem is to obtain adaptive

security without complexity leveraging ( subexponential hardness

We use a hybrid argument :

Heyko : Real game

Hibs : After adversary commits to X*
,

we set
public parameters as follows :

A E
2g

" 'm

R
, . . . . , Re

E HI 5mm

A
' FAR "

-

"* G t %
" "

} mpk = ( Ai Ai . - -

'
Ae

,

u )
f

Ae ← ARE - xe* G E Ign
'm Msk = TA

u E agn

For challenge ciphertext , compute

( v1 v , I - - - Ive ] = STACI I R , I - - - I Re ) t et ( IIR ,
I . . . I Re]

v
' = state 't

pe
. LEI

Hib : switch challenge ciphertext to uniformly random vectors :

V
, Vi , . . . ,

Ve ← Igm , v
' t

2g
Ct = (v , Y . . . .

,
Ve ,

Hybo and Hyb , are statistically indistinguishable by LHL . Namely ,
CA

,
AR

. . . . .

,
ARE) E (A

,
Ui

,
. . . . Ue) if A

, Ui . . . ,Ue£ 74mm

and R
. . . . .

,
Red Etf

" "

and m 7 3 nlogq .

↳
strictly speaking , we require a generalization of the LHL that says that (A ,

AR
,
ER ) E ( A

,
U

,
ETR )



Hyb, and Hybz are computationally indistinguishable by LWE
. Suppose there is an adversary A that can distinguish Hyb, and Hybz .

We

use A to construct an algorithm B for LWE :

I
. Algorithm B receives an LWE challenge (LA tu] , Cblb'3) Ign

" "

Igm
"

where b' = STATE or b E Igm
.

b
'

= state '

b
' t

Eg
2 .

Let x* be the attribute A chooses for the semantic security game .

3
. Algorithm B samples R . . . . .

,
Re E { It 3

" "

and sets Ai ← ARI - Xi G and sets the mpk as ( A , Ai . . . .

,
Ae

,
a )

and
gives mpk to A

.

4
. Suppose A makes a key - generation query on a circuit C

.
It must be the case that CCA ) = 1

.
This means that

Ac = EvalPK (C
, Ai , . . .

,
Ae)

= Eval PK (C , AR ,
- xi G , . . .

,
ARE - xe* G)

= Are t Clxt ) - G
}
This will allow the reduction to sample keys whenever CCH ) = 1

,
but not when CCH) -

- O
.

= ARC t G ( known as the "

puncturing
"

technique
-

we have a trapdoor
that works sometimes ]

By design, Rc is small . To simulate a key , algorithm B needs to compute a short rc such that

[ At Ac ] re = U
.
This is possible since B knows Rc such that Ac = A Rct G so B computes

re ← SampleRight ( A ,
Ac

,
Rc

,
U
, p), which is indistinguishable from a real key ( output by the actual

keyban algorithm)

5
.

For the challenge ciphertext , set

✓ = b and Vi = BT Ri for ie El ]

v
'

-

- b 't pl
- LEI

and output Ct = (v
,
v , . . . .

,
Ve ,

V
' )

.

Tiopossibinities : -

Suppose bT= STA t et and b
'

= STU t e ! Then ,

Vi = ⇐ Ate ) Ri = STAR ; t et Ri

= 5 ( Ait x.
* G) TER ;

Thus
, ciphertext distributed exactly as in Hyb , .

-

Suppose b
"
and b

'

are uniformly random . Then
, by LHL

, all of the Vi are uniform over Igm and the

ciphertext is distributed
according to the specification in Hybz .

Thus
, assuming

LWE
, Hyb, and Hybz is computationally indistinguishable .


