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Goal of secure communication :

Alice Bob How do Alice and Bob communicate over an

(untrusted network)
s untrusted network ?

.

Eve Properties we might care about :

•

Message confidentiality : Eve should not learn messages
-

Message integrity
: Eve should not be able to modify messages

This: focus on symmetric cryptography leg. , assume Alice and Bob have a shared key)

(alsocaged a cipher)
a

we hide the limplicit) dependence on the security parameter

Definition

.
A symmetric encryption scheme defined over a key - space K

, message space M and ciphertext space C is a tuple

of efficient algorithms (key Gen , Encrypt , Decrypt) with the following properties :

-

KeyGen ( It )
→ to : On input the security parameter a

, outputs a key k Eko } can be randomized

-

Encrypt ( k , m ) → c : On input a key KEN and a message m E M
, output a ciphertext ee C algorithms

-

Decrypt l k ,
c) → m : On input a key KE K and a ciphertext ee C

, output a message me Me } typically a

deterministic
algorithm

Correctness
. for all I C- IN and m C- M :

f- can allow for negl (1) failure probability

Pr I k ←
KeyGen ( I

' ) : Decrypt ( k , Encrypt ( k , m ))
-

- m ] = I
.

C ice
,
this relation holds with prob. I -

neg
I C a ) )

"

Decryption recovers the message .

" ↳
called

"

statistical correctness
"
instead of "

perfect correctness
"

[
"

one-way ness
"

is not enough : leaking partial information can be problematic

How-todefinite? What is the
property

that we want ? Eve learns nothing about the message from its ciphertext .

Perfectly
.
for all AC- IN and Mo

,
m

,
E M and CE C :

Prf k ←
keyGen ( It ) : Encrypt Ck , mo )

=

e
] = Pr I k ←

KeyGen ( It ) : Encrypt I k ,
m ,) = c ]

given e
, adversary learns nothing about underlying message

( no matter how powerful the adversary is ! )

A cipher with perfect security : the one-time pad I OTP) :

K = { o , it Key Gen C I ' ) ? output k t

Kp
bitwise Xor operation

M -

- { 0,13
"

Encrypt ( k , m ) : output k to m (addition modulo 2 )

C = 10,131
Decrypt ( k , c ) : output k to c

Correctness
. Takeany

k t So, is? Then for
any m e fo, 13

'
:

Decrypt ( k , Encrypt I k , m )) = k to ( k ① m ) = m

Perfecta . Take any m E 9913
"
and CE fo , 13? Then

,

Pr Ek ← keyGen CI
' ) : Encrypt ( k, m ) = c ) = Pr [ k£10,13 " : Kot m = c ]

= Pr I k Eh so, is ' : k -
- m ⑦ C ] = IT

.

OTP is very simple ljust computing
xors ) and provides perf-ectsec-ey.su are we done?

NO ! The keys in a OTP are as long as the message itself . ←
though key can beinsahdafedana

↳ If we had a mechanism to share the key securely, can just share the message
instead

.



nd . If an encryption scheme with key -

space K and
message space Me satisfies perfect secrecy , then I Kol Z IN )

Prootlsketch.
Follows by a

"

counting argument
"

. Suppose IN a IMI
.

Let c =

Encrypt I k , m ) for some k t K and m t M
. Ciphertext e can decrypt to

at most 1kt a IMI possible messages , so there exist me
' EM such that Encrypt (k ,

m
' ) F c for all k t K (by correctness )

.

What if we want short keys ? Have to settle for weaker security . Compromise ?
require security against computationallyadversaries

.

Semantics .
An

encryption scheme (keyGen , Encrypt, Decrypt) is semantically if for all efficient adversaries A
,

SS Adv EAT = lprlwo -

- D - Pr Cw ,

-
- 1) I =

regt ( t)

where we define Wb (tr b t So, B) to be the output of the semantic security game
:

' " " '

b' E { on}
←
output

of experiment Was I Adversary 's goal is to guess
which of ( Mo

,
m

,
) was encrypted )

: We can construct semantically
- secure encryption schemes from PRGS . This is often called a

" stream cipher!

Let G : { 0,13
"

→ fo ,
IT be a PRG where l ⇒ I

.

We define the stream cipher as follows :

K = { 0,13
"

Key Galt ) : output ked
10,137 IKI c- short seed (key)

/ -
M -

- foil 3h Encrypt Ck, m ? : output c ← G ( k) Ot m T ← expanded pad
④

1-C = I 0,13L Decrypt l k ,
c) : output m

← Cock) ① c In
IF c- ciphertext

f PRG security

Semantic
security :

{ k£10,13 " : G (k) Ot Mo } I { rt for 3h : r to mo }
) OTP

(Hybrid argument) .

I { r er { oil : r to m
, }

I { k£80,131 : GGG ① m
, } ) PRG security

¥y: A PRG can be used to "

implement
" ( or "

compress
" ) a OTP in the setting of computationally - bounded adversaries

Why
" one-time

"

pad ? What
happens if we reuse the same key (pad) to encrypt multiplemessages

?

Suppose Co = GC k) ① Mo
⇒ co ① c

,
= ( G ( k) ① mo ) ① ( G (k) ④ m

, ] = mo ④ m ,
⇐ leaks information about the

C
,

= G Ck) to m ,
underlying message !

The
"

two - time pad
"

is completely insecure ! Never use a stream cipher to encrypt multiple messages
!

Notice: our
security

model does nod capture this attack
. Adversary only gets to see encryption of a single message . To capture reusability ,

we need a stronger security
definition that allows the adversary to see multiple cipher texts .



CPA-security.hn encryption scheme (KeyGen, Encrypt, Decrypt) is secure against
chosen plaintext attacks ( CPA - secure ) if for all efficient

adversaries A
,

CPA Adult ] -

- Ipfw . =D - Pr Ew , =D I -

-

neg162)
where Wb (b E fois ) is the output of the following security game

←÷:÷o¥÷÷:÷:c::c
. . ni .

M¥7 ] - semantic security challengerypt¥
⇐

f
7-
encryption oracle queries

/ ←Encrypt -+ 1-
✓ Adversary 's goal is to

guess
which of mo or m

, was encrypted , given access

b' E { 0,13 output of experiment Wb ( toofishcneonigryeptionradelie
, adversary gets to see encryptions of messages)

CPA
security captures a

cordate
notion of " multi - message

"

security : even if adversary gets to choose the message that is encrypted, it Canet break

semantic security .↳
standard notion of

messageconfid-entiaityfcipherte.es

must be longer than plaintexts .

Implication: CPA - secure encryption schemes must be randomized ! OTP and stream ciphers are not CPA - secure .

CPA-se-ueencrypt.fr#Rf
: Let F : I 0,13

"
x 10,13

"
→ 90,131 be a PRF

.

We define the cipher as follows :

K = 10,13
"

KeyGen ( E ) : output KE to , B
"

M = I 0,1ft Encrypt (k , m ) : sample r E 90nF
I

use PRF to derive a (different)
Atl

C = {0113
compute

t ← FCK
,
r ) to m

random pad for each encryption

output C = Cr
,
z)

query

Decrypt ( k , C) : parse
C- ( r

,
2- ) and output m ← FCK,

r ) to Z

CIA
-

security
: Proceed via hybrid argument :

Nybo : Real
game

where challenger encrypts mo / PRF security

Hy bi : Hybo except challenger uses a truly
random function fl . ) in place of FCK

,
. ) Statistically indistinguishable as long as r*

used to encrypt challenge ciphertext never

Hybz : Hyb , except challenger encrypts m ,

}
appears in encryption query (up. PdL!ugly

Hyb , : Real game where challenger encrypts M , IPRE security
In practice , we have block ciphers ( PRB ) with fixed block sizes .

For example ,
AES : {0113128 × {913128 → 1011528 is a commonly

used block cipher

with 128 - bit blocks. To encrypt messages longer than 128 - bits
, we use

"

randomized counter mode " :

128 - bit blocks

-

-m63/mlB/mk3#l
message

to Ot Ot Ot

I /¥AE¥kr)rt¥¥ pad (computed using counter mode)-1€
ciphertext

Secy: As long as no
" collision

"

( repeated block) , secure
assuming

AES is a PRP I thus, ggjuseo.ggme key to encrypt)



Message.int#egrity: Confidentiality alone not sufficient
,
also need messageintegrity .

Otherwise adversary can tamper with the message

(e.g. ,
"

Send $100 to Bob
"

→
"

Send $100 to Eve " )

Idea : Append a
"

tag
" (also called a

"

signature
" ) to the message to prove integrity

(
property we want is tags should be hard to forge)

MessagetatoKACs ) : A
message

authentication code with key -

space
K

, message space Me
,
and tag space T is a tuple of three

algorithms ( KeyGen , Sign ,
Verify) with the following properties

:

-

key Gen ( I
' ) → k : On input the security parameter 7

, outputs a key k E ke

-

Sign ( k , m ) → t : On input a key KE K and a message m EM
, outputs a tag t E T

-

Verify ( k , m ,
t ) → Eo , 13 : On input a key KEK

,
a message m EM

,
and a tag t E T

, output b Elo , B

Correctness: for all XE IN and all messages m c- M
,

Pr ( k ← Key Gente ) : Verify ( k , m
, Sign l k , m )) = I ] = 1

.

adversary gets to choose

messages to be signed
-

Unfeorgeabiity: A MAC (KeyGen , Sign , Verify ) satisfies existential an forgeability against chosen message attacks ( E UF - CMA ) if for all efficient

MAC Adv LA] = Pr I W = 1) = negl ( X) where W is the output of the following security game
:adversaries A

,

, once )

Si¥f
i -

(m*
,
t 't )

Let mi
,

. . .

, Ma be the signing queries the adversary submits to the challenger, and let ti ← sign I k ,
mi ) be the challenger's

responses .
Then

,
W = I if and only if :

Verify I k , m* , t * ) = I and ( m 't
,
t * ) I { Cmi , -4) ,

. . .

,
C ma

,
to ) }

MAC security notion says that adversary cannot produce a needtag on
any message even if it gets to obtain tags on messages of its

choosing

MACsfromPR# : Let F : K x M → T be a PRF
.
We construct a MAC as follows :

Key Gen C It ) :
output KE K

Sign ( k ,
m ) : output t ← FCK

,
m)

Verify (k ,
m
,
-2) : output I if I = Elk ,

m ) and 0 otherwise

Unforgeability : Use a hybrid argument ?

Hybo : Real EUF - CMA game

Hy bi : Hybo except the challenger computes ft ) in place of FCK ,
o ) where f- * Fans ( M

,
T ]

In particular , we can show that for
any

efficient algorithm A that breaks security of the MAC ,
there

exists an efficient adversary B for the PRF such that

MAC Adv CA ] E PRF Adv CB
,
f ] t FIT

Thus
,
if F is a secure PRF and TITI is negligible lie

.

,
the size of the tag space is superpolynomial in the security parameter) ,

this construction is a secure MAC
.

We give a formal proof for reference on the next page .



PNofofllnfor-geabiity.FR an adversary A
,
let HybiKA)denote the output of A interacting according to the specification of

Hy bi . By construction
,

MAC Adv (A) = Pr I Hybo CA) = 13 .

We now show the following :

Lemma.
For all efficient adversaries A

,
there exists an efficient adversary B such that

Ipr I Nybo CA) -
- I ] - Prlrlyb , CA) = 1) / = PRF Adv I B ,

F ]

Proof
.
Let A be an adversary for the MAC security game .

We
use A to construct an adversaryB for the PRF

security game .

Algorithm B will use a copy of A as follows :

AlgorithmB-⇒halkngerfrF_if b = o : k t k ; f ← FCK
,

. )
.

Algorithm A if b = I : fed Fans ( M
,
T ]|¥E¥¥µ← semi

I Mt E N
f-

-

(mst , t
' ) ←t t

'

← ffmt )
-

←-
output I if Cmt

,
t * ) did not appear in any [ the overall criterion is the one used in

Signing query and t *
= t

'

Hybo or Hyb ,
-

this is precisely checking Verify ( k , x , t
't ) = I in Nybo and Hyb ,

Suppose b -

- O
.

Then B
perfectly simulates experiment Hybo for A

.
In this case

,
Pr I B outputs I I b -

- o ] = Prftlybo (A) = I ]
.

Suppose b = I
.
Then B perfectly

simulates experiment Hyb ,
for A

.

In this case
,
Pr I B outputs I I b -

- I ] = Pr CHyb , (A) = I ]
.

Thus , we have that

PRF Adv I B , F) = I Pr LB outputs I I b -
- O ] - Pr I B outputs I I b =D /

= I Pr IHybo CA) -
- I ] - Pr IHyb , LA)

-

- I ] Ba

Lemme.
For all adversaries A

, Prlrlyb , (A) = I ] E ¥1
.

Proofi Take
any adversary A and consider an execution of Hyb ,

CA)
.
Let f : M → T be the function sampled by the challenger

and Cmt
,
-2*1 be the adversary's challenge .

We bound the probability that Hyb , (A) = I
.

We consider two cases :

¥
: Suppose the adversary previously made a

signing query
on m

't
.

Then
,
Prl Hyb , LA) = I ] = 00 since the first

requirement says that t
't
t flint )

,
in which case Verify (k , m

"
,
-1*1=0 .

¥2 : Suppose the adversary never makes a

signing query on m
't

.

Then
,
its view is completely independent of f(m*)

since f is a truly random function . In this case
,

Prl Hyb , CA) = I ] = Pr I fee fans I m ,
T ] : Hmt ) = -2*1

=p r It
' ET : t

' =t* ] = FIT
.

We conclude that Prltlyb ,
CA) = I ] s FIT

.
Ba

By the lemmas above
, we have that for

every efficient MAC adversary A
,
there exists an efficient PRF adversary B such that

MACAdv LA] = Prtrlybo (A) = I ] E PRF Adults
, f) t Pr IHyb , LA) =D

E PRF Adv CB, F) t if Bae



com-biningonfiaityandintegrity.cohen we use an encryption
scheme

,
we usually want both confidentiality and integrity .

This is

provided by an Etchedencryption scheme
.

Aviation : An encryption
scheme (Key Gen, Encrypt , Decrypt) is an authenticated

encryption
scheme if it satisfies the

following properties :

- CPA security
-

Ciphertext integrity : For all efficient adversaries A
,
Pr [W = I ] = negl C I ) where W is the output of

the following experiment :

adversary

challenge

k ←
keyGen CE)

T÷÷÷⇒/c--11
-

c*

Let Ci
, . . .

, CQ be the ciphertext the challenger computes in response to

encryption queries .
The output W=1 if and only if

Decrypt I k , a ) F I and 4 { a
,

. . ,
Ca}

Namely , an encryption scheme provides ciphertext integrity if no efficient adversary

can come up
with a

" valid
"

ciphertext ( ie
,

a ciphertext that does not

decrypt to I )
.

Ta#y: Authenticated
encryption schemes provide both confidentiality

(CPA -

security) and integrity
(ciphertext integrity) .

↳ This is what
you

should use for symmetric encryption
!

Constructingencryption:
"

encrypt
- then - MAC

"

: Let (KeyGens, , Encrypt , Decrypt) be a CPA -

secure encryption
scheme with key -

space

Kse
, message space

M
, and ciphertext space C

.

Let (Key Gen mac , Sign , Verify)
be a MAC with key -

space Knac
, message space

C and tag space T
.

Authenticated encryption scheme :

Kae = Rse t Knac Key Gennie ( I ) : compute Kss ←
Key Gen see C It )

MAE = M Knac ← keyGen mac CITY and

CAE = C × T output l Kse ,
Knac )

Encrypt ( k , m ) :
parse

k = ( Kse
,
Knac) and compute

at
'

← Encrypt l Kse , m )

t ← Sign (Knac , Ct
' ) and

output Ct = let '
,
t )

Decrypt ( k ,
Ct) :

parse
k = Close

,
Knac) and Ct = let'

,
t )

if Verify ( kmaq Ct
'

,
t ) t I

, output I

else
, output Decrypt (Kse ,

Ct
' )



TIM . If (KeyGange , Encrypt, Decrypt) is CPA secure and ( KeyGen mac , Sign , Verify) is EUF - CMA secure
,
then "

encrypt
- then - MAC

"

is an authenticated encryption scheme
.

[
block cipher ( PRP)

Corollary .
PRFs (and thus also

,
Owers ) ⇒ authenticated encryption (in practice : AES - GCM mode )


