
CS6501Week9+MuHipartyCompu-ah

Interactive proofs are two -

party protocols between a

prover
and a verifier

,
where prover

's goal is to convince verifier that

some statement x is true .

This week
,

we consider a generalization to two -party computation :

Alice (x) Bob (g)
- Alice has a (secret) input x and Bob has (secret) input
c-

t.
- t ÷: :÷ .

" ÷ :* : : : without)
Hay) ffxiy)

txampes : Yao's millionaire problem : Alice and Bob are millionaires and
they want to learn which one of them is richer without

revealing to the other their net worth [in this case f- G.y)
= 1 if x -

y and 0 otherwise]

Private contact discovery : client has a list of contacts on their phone while Signal (private messaging application) has list of

users that use the service . Client wants to learn list of Signal users that are in their contact

list while Signal server should learn nothing.

Private ML : client has a feature vector X while the server has a model M .
At the end

,
client should learn MG) and

server should learn nothing .

Genome Privacy : Two patients want to identify if they share
any rare genomic variants but do not wish to reveal their full

genomes to one another
.

Zero knowledge : Prover has input (x , w) and verifier has input X . At the end of the protocol , verifier learns RG ,
w)

Party Is

y
party 2's

while
poorer

learns nothing .

output f output

Let f = (fi
, fz) be a two -

party functionality, and let t be an interactive protocol for computing f
.

↳ We write view (x , y) to denote the view of party i C- {1,23 on a protocol invocation it on inputs x and
y .

Note that view it' Gy) is

a random variable containing Party i 's input , randomness, and all of the messages Party i received during the protocol execution
.

↳ We write output
" (x ,y) to denote the output of protocol a on inputs x and y . We will write output

"

Gy) = (output ,
"
G.y) , outputs

' Gy))

to refer to the outputs of the respective parties .
The value output Ky) can be computed from view'T G.y) .

The protocol ti should satisfy the following properties :

-

Correctness : For all inputs X
, y

:

Prf output.TK ,y)
-

- fi G.y))
-

- I
.

- (⇐H¥ey : There exist efficient simulators S ,
and Sz such that for all inputs X and

y
{ Sift,x, fix , y)) , flag) } I { view ,

" (x .gl , output
' Gy) }

{ szAIg.fzlx.gl) , flag) } E { view :'(x.y) , output
" (x. y) }

Notes : -

Security definition says that the view of each
party

can be simulated just given the party's input and its output in the

computation (i - e
, the minimal information that needs to be revealed for correctness) .

In other words
, no additional information revealed

about other party 's input other than what is revealed by the output of the computation .

- Definition does not say other party's input is hidden
. Only true if f does not leak the other party's input .

-

Definition only requires simulating the view of the hest party.

Thus
, security only holds against a party that is

"
semi - honest

"
or

"

honest - but - curious
"
:
party follows the protocol as described

,
but may try to infer additional information about other party's input based on

messages it receives .

Oftentimes
,

semi - honest security not good enough .
Real adversaries can be malicious (ie ,

deviate arbitrarily from protocol to corrupt the

computation (e.g. , cause honest users to compute the
wrong answer

, or worse ,
learn information about honest party's secret inputs)

Defining security against malicious adversaries is not easy.

Here is a sketch (informal) of how it is typically done :

Real World Ideal World
-

-

P , (x) Bly) trustedthirdpart.IT/

j t flag) flxyl
output.

" Gy) output, G.y,
R (x) P2 (y)

Security : An adversary that corrupts Pi in the real world can be simulated by an ideal adversary that corrupts Pi in the ideal world
.

Output of real and ideal executions consists of the adversary 's output and the outputs of the honest parties . Ideal execution

designed to capture world where no attacks are possible . Only possible adversarial behavior is
"

lying
" about input to the execution

(output is computed by the honest parties) .

Faires :
Adversary should not be able to learn outputs of the computation before the honest parties

Imagine a secure auction where adversary learns results first and decides to abort the protocol and claim iietwork failure
"

before)(
honest parties can obtain the results

-

Difficult notion to achieve (beyond the scope of this course)

Ourfocuis : Semi - honest two-party computation

~ this is
necessary

and sufficient for general multiparty computation (MPC) !

key-cryptographicbuild.mg#k : oblivious transfer (OT)
sender (mo ,

m
.) receiver (b E { 0,13) sender has two messages mo

,
M ,

T receiver has a bit b C- 10,13

-
/ at the end of the protocol , receiver learns Mb ,

sender
✓

Mb learns
nothing

Correctness : For all messages mo
,
m

,
E {0,13

"
:

Pr [output
" (Cmo

, mi , b) = (t , Mb)) = I

Se# : There exists an efficient simulator S such that for all mo ,
m

,
C- { 0,13

"

,
be {0,13

S (I ' ,
b

, Mb) I view # (Cmo , m ,) , b)

Receiver's view can be simulated just given choice bit b and chosen message Mb (message Mi - b remains hidden)
.

Recei#y : There exists an efficient simulator S such that for all mo
,
m

,
C- { 0.13

"

and BE 90,13
,

S (It
,
Mo

,
m .) E view , ((mo ,

m .) , b)

Sender's view can be simulated just given its input messages mo
,
m

,
(receiver 's choice bit b is hidden)

.

Constructivisms : Very heavily
- studied primitive and protocols .

We will look at two examples .

Beta : Let 6 be a prime order group and H : G → 90,13
"
be a hash function (modeled as a random oracle) :

sender (mo ,
m
,
E 10,17

") receiver (b C- 90,13)

c. EG I >
sb Eap has ← gsb

ftp.jew?cYayYYsa?!
ho

,
h
,

hi - b ← %gsb secret key for his)
c-

rock Ip Ctu ← (gro , H(horo) ④ Mo)
r
,
I Ip Ct

,
← (gri , H (hii) ① mi)

I
v

Mb ← H ftp.ob) ④ Ctb
.
.

Correctness : By construction ,
Ctb!! = ⑨b)

Sb
= hbrb and correctness follows

.

SeiderSecurity : We construct simulator as follows . On input (17 ,
b
, Mb) :

I . Choose Cer G

L .

Choose Sb # Zp and his ← gsb
,
hi

- b
← Yhb

3- Choose ro ,
r
,
⇐
Ip and set Ctb ← (grb

,
Mb to tb)

Cti - b
← Cgrtb

,
ti - b) where tb , -4 - b

t soil)
"

and H (hi') ' → tis

Chaim : Under the CDN assumption and modeling H as a random oracle :

SCI '
,
b
, Mb) I view (Cmo.mil , b)

To see this
,
observe that simulated view is identical unless distinguishes queries

random oracle on input
hits? We use such a distinguishes

to break CDH :

I
.
On input a CDH challenge (g , g

"

, g
't)

.

2 .
Set c =g× . Sample Sb tap ,

his ← gsb and hi - b
← Ygsb

.

3- Choose rb trap and set Ctb ← Cgrb
, Mb ① tis) where tbt {0,15 and H (hbrb) ↳ tb .

4
. Set Ct , - b

← (g? ti - b) where ti - b
t lol)

"

Perfect simulation of real / simulated views
,
unless distinguishes queries

random oracle at hits = 9×YgsbY
,

in which case
,

we can

compute GM = hits Yg't)% and break CDH
.

Receiversecurity : Sender 's view in the protocol consists of two uniformly random group elements ho
,
h , such that hoh

,
= C

.
Simulator just

needs to sample hot G and set h
.

← Tho
.

This is a perfect simulation
.

Generate : sender sends a challenge . Receiver chooses a single Ekoamal public Secret keypair for message it wants to decrypt. This uniquely

defines the other public key (and receiver is not able to compute the secret key efficiently) . Sender then encrypts both messages

and receiver is able to decrypt exactly one of them
. Other message hidden by semantic security

of El Gamal .

Naor-pinkasOTlwithoutrandomorad.us Let IG be a prime order group .

sender (mo
,
m ,

E Gl) receiver (be Eo , B)

* Ip yer Ip h ←

g
'

a ← gud

Vb ←

g
"

vi. BE 6) { g" }
(g ,

h
,
U

,
Vo

.
Y)

do
, Po

£ Zp

#

Cto ← (u%gP; vodohPomo)

4. p ,
E

2pct
,
← lung" '

,
yah " 'm

.)

In

Mb ← Ct
x

Ctb
, o

(dbytpb) x
correctness : cha , = Vbdbhtbmb = gdb " htbmb =

g m- b } ÷b÷ = my
Ctb

, o
= utbgpb = ydby tpb

Sender_Sy : we will
argue that Mi - b is perfectly hidden .

Since Vi - b t g
"

,
(udiibg"

- b

,
Vfb" h

" ")
are uniformly random (see DDH random

self reduction) .

Thus
,

Mi - b is perfectly hidden by VII
- b HP ' - b (over the sender randomness di - b , Bi - b) .

Simulator just

chooses uniformly random pair for Cti - b .

Receivers : Follows by DDH in G
. In particular, by DDH,

Vb is computationally indistinguishable from uniformly random
group

element
,

so can construct

simulator that just outputs random group elements (independent of b) .

Yaolsprotocolforsecure2-partycomputatiopkeyi-gmd.cm

I :
"

garbling
"

protocol (garbled circuits)
truth table :

Dani
ana

Xz
⇒ O l O

i 9 I
0

,

1) Associate a pair of keys (kilo
'

,
k!") with each wire is in the circuit

co)

Yi!
AND -93

ki"
Kib) : key associated with wire valve b

ki ki "

ki " for wire i [symmetric encryption key]

2) Prepare g¥htabk for the gate
↳ Replace each entry of truth table with corresponding key

↳
Encrypt output key with each of the input keys

O ki " Hoo ← Encrypt (ki
"

,
Encrypt (ki? KE

'))

O

!!! ! !!!!
"!÷

= > Cta ← Encrypt (ki " . Encrypt (ki
"

,
ki "))) randomly shuffle ciphertext

/ ki " cho ← Encrypt (ki
"

, Encrypt (ki? k ,
" '))

I ki " oh , ← Encrypt (ki's
,
Encrypt (KI

"
,
ki "))

3) Construct decoding table for output values

Kj" t O

} Alternatively ,
can just encrypt output values instead of

Kj" m > 1 keys for output wires

Ge#bligtansfor : construct garbled table for each gate in the circuit
, prepare decoding table for each output wire in the

circuit

⇒¥i : Ii '÷÷÷÷z÷t
'' ii:# II then in ::L:*

ctoi
'
etii' -7k ki

"

Hot" ctio"
-

co, Lf Kj
" #

← decode using decoding table

Ks -

- ctoo" olio"
-

Invariant : given keys for input wires of a gate, can derive key corresponding to output wire ⇒ enables gate - by - gate evaluation of garbled circuit

↳ Reg : Evaluator needs to obtain keys (labels) for its inputs (but without revealing which set of labels it requested)

f
number of input wires

Abstractly : Garble (17 ,
C) → (E ,

{ Li
, b Sie en] ,besoms)

Eval (E , { Lisa. Sieen,) →

y
- Eor¥ss : For all circuits C : so ,

13h → {0,15 and all x E fo , 15 :

if (E
,
{ Lib 3 item ,

be so , B) ← Garble (17 ,
C)

,

Pr (Eval (E
,
{ Lisa. Sieen ,) = C Cx)] = I

-

Security : There exists an efficient simulator S such that for all circuits C : {0,17
"

→ fo , IT and X E 90,15 :

for (E
,
{ his liens

,
be so , is) ← Garble (1? C) :

{ (E
, { Limit item)) E s (I ' ,

C
,
C.Cx))

←
can also consider notion where only ICI is provided to S

Namely, the garbled circuit and onset of labels can be simulated just given the output CG) .

We can show that Yao's garbling transformation satisfies above definition .
[There are also other types of garbling schemes

.
]

od :

circuit C

Alice (garbled
1-

Bob (evaluator)

⇐private ⇒¥y
1

. Prepare garbled circuit ! Prepare OT queries for

Hr C bits of y
OT for labels for y-

2 . Prepare OT res pours

for Bob's inputs . Messages

correspond to wire labels
.

OT responses for

labels of Bob's input
#

garbled circuit
-

labels for Alice's input y
-

2 .
Evaluate garbled circuit

to learn C. (x , y)

Correctness : follows by correctness of OT and of the garbling construction

Security : Relies on security of OT and garbling transformation
f-

relies on OT simulator to simulate OT responses

↳ Simulate Bob's view given output of computation (using the garbled circuit simulator)
↳ Simulate Alice's view using OT simulator

Variants : l . If both parties should learn output , Bob can send it to Alice .

2 . If Alice and Bob should learn distinct outputs ,
Alice can have the functionality output a blinded / encrypted version of

her output.

3. Can extend to malicious security (need additional rounds and some modifications) .

