CS 6222: Introduction to Cryptography Spring 2021

Take-Home Final Exam

Due: May 14, 2021 at 5pm (Submit on Gradescope) — No Late Days! Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:
https://www.cs.virginia.edu/dwud/courses/sp21l/static/homework.tex

You must submit your problem set via Gradescope. The exam is divided into three sections. Each section
contains two problems. You only need to answer one problem from each section (for a total of three
problems). If you answer more than one problem from any section, only the first one will be graded. You
may cite any result from lecture or the course lecture notes without proof.

Collaboration Policy. This is an individual assignment. You are not allowed to collaborate with anyone
on this problems and you are not permitted to search online for solutions to these problems. If you do
consult external sources (these cannot include solutions), you must cite them in your submission.

1 Symmetric Cryptography

Instructions. Answer one of the two problems in this section. If you answer both problems, only the
first one will be graded.

Problem 1-1: Cryptographic Combiners [25 points]. Suppose we have two candidate constructions
I1;, 11, of a cryptographic primitive, but we are not sure which of them is secure. A cryptographic combiner
provides a way to use I1; and II, to obtain a new construction I1 such that II is secure if at least one of
I1;, 10, is secure (without needing to know which of IT; or I1» is secure). Combiners can be used to “hedge
our bets” in the sense that a future compromise of one of IT; or IT, would not compromise the security of
I1. In this problem, we will study candidate combiners for different cryptographic primitives.

(@) Let G1,G»: {0, 1 = 10,133 be arbitrary PRG candidates. Define the function G(sy, $2) := G1(s1) &
G2 (s2). Prove or disprove: if at least one of G, or G is a secure PRG, then G is a secure PRG.

(b) Let Hi, H»: {0,1}* — {0, 1} be arbitrary collision-resistant hash function candidates. Define the
function H(x) := H;(H2(x)). Prove or disprove: if at least one of H; or H; is collision-resistant, then
H is collision-resistant.

(c) Let(Sign;, Verify,) and (Sign,, Verify,) be arbitrary MAC candidates. Define (Sign, Verify) as following:

 Sign((ky, k2), m): Output (#;, t) where #; — Sign, (k;, m) and t, — Sign, (ka, m).
o Verify((ky, k»), (1, £2)): Output 1 if Verify, (k1, m, t;) = 1 = Verify, (k2, m, f,) and 0 otherwise.

Prove or disprove: if atleast one of (Sign,, Verify,) or (Sign,, Verify,) is a secure MAC, then (Sign, Verify)
is a secure MAC.


https://www.cs.virginia.edu/dwu4/courses/sp21/static/homework.tex
https://gradescope.com/

Problem 1-2: Homomorphism and Security [25 points]. Let F: {0, 1} x {0,11* — {0, 1}* be a candidate
PRF construction.

(@)
(b)

Suppose that for all k, x, c € {0, 1}4, F(k, x® ¢) = F(k, x) ® c. Show that F cannot be a secure PRE

Suppose that for all k, x, c € {0, 1}, F(k® ¢, x) = F(k, x) ® c. Show that F cannot be a secure PRE

Let (Encrypt, Decrypt) be a symmetric encryption scheme with message space {0, 1}

(c)

(d)

Suppose there is an efficient algorithm Combine(ct;, cty) that takes ciphertexts ct; — Encrypt(k, x1)
and cty — Encrypt(k, x2) and outputs a new ciphertext ct’ where Decrypt(k,ct’) = x; & x,. Note
that Combine is a public algorithm (it does not require knowledge of the secret key). Show that
(Encrypt, Decrypt) cannot be CCA-secure.

Show how to construct a CPA-secure symmetric encryption scheme that supports the above Combine
algorithm. Namely, describe the key-space, Encrypt, Decrypt, and the Combine algorithms for your
construction. Your construction can use a secure PRF F: {0,1}* x {0,1}"* — {0,1}" (but no other
primitives or assumptions). Note that ciphertexts output by Combine can be longer than those output
by Encrypt (and correspondingly, your Decrypt algorithm may behave differently depending on the
length of the ciphertext). Prove that your construction is CPA-secure (Hint: You can cite a theorem
from class here).

2 Public-Key Cryptography

Instructions. Answer one of the two problems in this section. If you answer both problems, only the
first one will be graded.

Problem 2-1: Hash Functions from Discrete Log [25 points]. Let G be a group of prime order p with
generator g. Sample hy,..., h, £ G and define the hash function Hp,, ..n,: Z,’} — G as follows:

(@

(b)

X1 1, X; X
Hp,, . n, (X150, X0) := B hy? - hy" € G,

Show that Hy, 5, is collision resistant under the discrete log assumption in G. Specifically, in the
(keyed) collision-resistant hashing security game, the adversary is first given h;, ..., h, < Z, and it
succeeds if it outputs (x1,..., x,) # (x],...,x,,) such that Hy, . (X1,...,%) = Hp, _p,(X},...,x,). In
the discrete log security game, the adversary is given h 2 G, and it wins if it outputs x € Z, such that
h = g*. Hint: Consider a reduction algorithm that starts by guessing the index i* € [n] (uniformly
at random) where x;+ # x}.. Show that your reduction algorithm succeeds whenever the guess is
correct. Remember to compute the advantage of your reduction algorithm (for breaking the discrete
log assumption).

..........

Show that the function Hy,  ,, has a trapdoor that can be used to sample pre-images. Specifically,
show that if someone knew the discrete logs of hy, ..., hy, (i.e., z; € Z, where h; = g* for each i € [n]),
then for any 7 € Z,,, they can find a pre-image (x1,...,X,) € ZZ such that Hy, 5 (x1,...,X5) = gt.



Problem 2-2: Hardness of RSA [25 points]. Recall that an RSA challenge consists of a modulus N = pgq,
an exponent e, and an input y € Z};. The goal is to compute x € Z}; such that x° = y (mod N).

(@)

(b)

Consider an RSA challenge (N, ¢, y), and suppose you have an efficient algorithm that takes as input
(N, e, y) and outputs values a € Z;‘V and b € Z such that af = yb (mod N) and gcd(b, e) = 1. Show how
to use (a, b) to efficiently compute a solution x € Z}; to the RSA challenge (N, e, y). Hint: Recall that
gcd(b, e) = 1 means there exist integers s, t € Z such that bs+ et = 1.

Fix an RSA modulus N = pq and exponent e. Suppose you have found an algorithm A that solves
the RSA problem on all inputs in some set S € Z, where |S|/|Z},;| = € and runs in time poly(log N).
Namely, for every y € S, A(y,e, N) outputs x € Zy, where x* = y mod N. Show how to use A to
construct an efficient algorithm that runs in time poly(log N, 1/¢) and on any input y € Z},, success-
fully outputs x such that x® = y mod N with probability at least 1/2. Your algorithm must always
terminate in poly(log N, 1/¢) time. Hint: A random value z l Z) will satisfy z € S with probability €.
You can also use the fact that (1 — )" < e~#” for all positive integers n.

3 Cryptographic Protocols and Lattice-Based Cryptography

Instructions. Answer one of the two problems in this section. If you answer both problems, only the
first one will be graded.

Problem 3-1: Cryptographic Protocols and Definitions [25 points].

(@)

(b)

(©)

Consider the following protocol for proving knowledge of the factorization of an RSA modulus N = pg.
Both the prover and the verifier know N. The proof consists of a single message where the prover
sends the factorization (p, g) to the verifier and the verifier accepts if p, g are prime and N = pgq.
Show that this protocol is zero-knowledge if and only if there exists a polynomial time algorithm for
factoring.

Recall the Schnorr signature scheme from class. We work over a group G of prime order p and with
generator g and a hash function H (modeled as a random oracle). The verification key is a pair (g, h)
and the signing key is x € Z,, where h = g*. A signature on a message m is a pair o = (u, z) where
z =1+ cx such that g% = uh® and ¢ — H(g, h, u, m). Consider a variant of this signature scheme
where we forget to hash ©# when computing c (i.e., we set ¢ — H(g, h, m)). Show that this signature
scheme is insecure.

Fix amodulus g and let y be a distribution over Z; where Pr[x < y : |x| < B] = 1. Show that hardness
of LWE, ¢,y implies hardness of SIS, , 4, s whenever g > 45Bm.

Problem 3-2: CCA-Attack on Regev Encryption [25 points]. In this problem, we will show that the basic
Regev encryption scheme from lecture is not CCA-secure. In fact, we will show the stronger property that
a CCA adversary is able to recover the secret key itself. Recall that in Regev encryption, the secret key is a
vector s € Zy and the public key is a pair (A,b) where A€ Zg*™ and b € Z'. An encryption of a bit b € {0, 1}
consists of a pair (Ar,b"r+ b- |g/2]). To decrypt a ciphertext (u, v), the decryption algorithm computes

T

z=v—-s'umod g and outputs 1 if g/4 < z < 3q/4 and 0 otherwise.



(a) For z € Z,4, define the function f;: Z; — {0,1}, where f,(x) =1if g/4 < (z+x mod q) <3q/4 and 0
otherwise. Construct an algorithm that given O(log q) queries to f, recovers the value of z € Z;. Your
algorithm is allowed to make arbitrary queries to f,. Prove the correctness of your algorithm.

(b) Using your algorithm from Part (a), show that an adversary playing the CCA-security game for Regev
encryption is able to recover the secret key using at most O(nlog q) decryption queries.
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