CS 6222: Introduction to Cryptography Spring 2021

Homework 4: Public-Key Cryptography

Due: April 16, 2021 at 5pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:
https://www.cs.virginia.edu/dwud/courses/sp21l/static/homework.tex

You must submit your problem set via Gradescope. Please use course code D55GP5 to sign up.

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the computing
IDs of all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: DDH in Composite-Order Groups [7 points]. Let G be a cyclic group of order 2g where g
is odd. Let g be a generator of G. Show that the DDH assumption does not hold in G. (Specifically, for
this setting, the DDH assumption asserts that the distributions of (g, g%, g%, g*?) and (g, g% g”, g") where
ab,r & Z34) are indistinguishable to any efficient adversary.)

Remark: This shows that the DDH assumption does not hold over Z,, whenever p =2 +1 for some odd g.
In fact, the DDH assumption does not hold in Z}, for any prime p (there is an efficient distinguisher based
on Legendre symbols). However, assumptions such as CDH or discrete log still plausibly hold over Z,.

Problem 2: Encrypted Group Chat [18 points]. Suppose a group of n people (denoted Py, ..., P,) want
to set up a shared key for an encrypted group chat. At the end of the group key-exchange protocol,
everyone within the group should know the key, but an eavesdropper on the network should not. We will
use the following variant of Diffie-Hellman over a group G of prime order p and generator g:

* At the beginning of the protocol, P; chooses s 2z p- We will view P; as the group administrator
that all of the other parties know.

* Each of the other parties P; (2 < i < n) samples r; Ny p and sends x; — g to the group administra-
tor P;. The administrator P; replies to P; with xf.

* The group key is then defined to be k — H(g*), where H: G — {0, 1} is a hash function.

Both the group description (G, p, g) and the hash function H are public and known to everyone (both the
protocol participants and the eavesdropper).

(a) Show that both the group administrator P; and each of the parties P; (2 < i < n) are able to efficiently
compute the group key.

(b) We say that the group key-exchange protocol is secure against eavesdroppers if no efficient adversary
who sees the transcript of messages sent by the honest parties Py, ..., P, is able to distinguish the
group key k from a uniform random string over {0, 1}*, except perhaps with negligible probability.


https://www.cs.virginia.edu/dwu4/courses/sp21/static/homework.tex
https://gradescope.com/
https://www.cs.virginia.edu/dwu4/courses/sp21/info.html

If we model H as an “ideal hash function” (i.e., random oracle), it suffices to argue that the shared
Diffie-Hellman secret g° is unguessable: namely, for all efficient adversaries A,

PrA(x2,%5,...,Xp, X;) = g°] = negl(A), (1)

where x; = g"i and r,...,1,, S & Zp,. This means that an eavesdropper who only observes the
messages sent by the honest parties cannot guess g°, and correspondingly, the shared key H(g®) is
uniformly random and unknown to the adversary.

Show that under the CDH assumption in G, the shared Diffie-Hellman secret g° in the group key-
exchange protocol above is unguessable (i.e., Eq. (1) holds for all efficient adversaries .A). As usual,
you should consider the contrapositive: show that if there exists an efficient adversary .4 that can
predict g° from the above challenge tuple (x, xg, ..., Xn, X;), then there exists an efficient algorithm
B that breaks CDH in G. Hint: Your algorithm 3 may need to invoke .A more than once. Remember
to compute the advantage of the adversary you construct.

Problem 3: Computing on Encrypted Data [20 points]. Let N = pg be an RSA modulus and suppose
that gcd(N, ¢(N)) = 1. Consider the following public-key encryption scheme with message space Zy. The
public key pk = N is the RSA modulus N = pq and the secret key sk is the factorization sk = (p, q). Let

g =1+ NeZ},. To encrypt a message m € Zy, sample h 2z

(@

(b)

()

(d)

2 and compute ¢ — g"hNe Zyp.

Show that the discrete logarithm assumption base g in Z 5 is easy. Namely, give an efficient algorithm
that takes as input (g, i) where h = g* for some x € Zy, and outputs x. Hint: Use the binomial
theorem: (a+ b)* = Zf:o (’l.c)a’ pk-i,

Show how to efficiently implement the decryption algorithm Decrypt(sk, ¢). Namely, describe an
efficient algorithm that given the secret key sk = (p, q) and a ciphertext ¢ = g”h", outputs the
message m € Z . You may use the fact that ¢(N?) = Ng(N). Hint: Remember that the decrypter can
compute @(N) = (p —1)(g — 1) from the secret key sk = (p, q).

Show that this public-key encryption scheme is semantically secure assuming that no efficient
adversary is able to distinguish the following two distributions:

(N,u) and (N,v),

where N = pgq is an RSA modulus, u < Zy, and v Zihe Z%, : h"}. Namely, show that the above
encryption scheme is semantically secure assuming that it is hard to distinguish random values in
Z}, from random N® powers in Z,,. Hint: You can follow the same structure as the analysis of
ElGamal encryption from lecture.

Show that given the public key pk and two ciphertexts ¢; — Encrypt(pk, m;), c2 — Encrypt(pk, my),
there is an efficient algorithm that outputs a new ciphertext ¢ where Decrypt(sk, ¢) = m1 + mp € Zy.
Your algorithm should only depend on public parameters and rnot the value of the messages mi;, my.

Remark: This is an example of an encryption scheme that supports computation on encrypted values.



Problem 4: RSA Signatures with Same Modulus [14 points]. A company is issuing a signing/verification
key for the RSA-FDH signature scheme to each of its employees. To simplify key management, the
company decides to use the same RSA modulus N for everyone. Each employee has a different (and
independently sampled) public and private exponent. Let d; denote the secret signing exponent and e;
denote the public verification exponent for employee i. Recall that in the RSA-FDH signature scheme
(with hash function H), e;, d; are chosen to satisfy e;d; = 1 mod ¢(N), a signature on a message m under
the i signing key is 0; — H(m)% mod N, and to verify the signature o on message m (with respect to
the public key e;), one checks that Uf" = H(m) mod N.

In this problem, we will show that reusing the modulus N is completely broken. Namely, any employee
i can use their secret signing key d; together with knowledge of another employee’s public verification
key e; to forge signatures on arbitrary messages on behalf of employee j. You should assume here that
employee i knows N, e;, d;, but not necessarily ¢(N).

(a) Show that employee i can use their public/private key-pair (e;, d;) to efficiently compute some
multiple of ¢(N). Denote this value N'.

(b) Suppose employee i is trying to forge a signature on behalf of employee j (with verification key e;),
and suppose moreover that gcd(N', e i) = 1. Show that using the value N " from the previous part,
employee i can efficiently compute a signature o on an arbitrary message m that verifies under e;
(i.e., compute ¢ such that 0% = H(m) mod N).

(c) Show how to generalize your algorithm from the previous part to work even if gcd(N', e;) # 1.

Remember to prove the correctness and efficiency of each algorithm you develop.

Problem 5: Authenticated Key Exchange [16 points]. Consider the following protocol for authenticated
key exchange (AKE) with mutual (i.e., two-sided) authentication. Both the client and the server have a
public/private key-pair (vkc,ske) and (vks,sks) for a digital signature scheme, respectively. They also have
certificates certc and certg that authenticate vk and vkg, respectively. The AKE protocol operates over a

group G of prime order p and generator g. The client samples a fresh x iy p and the server samples a
fresh y iy p in each invocation of the protocol:
Client Server

g%, certc

g7, certs, Sign(sks, (certc, g%, g%))

Sign(skc, (certs, g%, g7))

In the second step, the client validates the signature with respect to the verification key contained in
certs before computing its third message. At the end of the protocol, if all of the signatures verify (with
respect to the verification keys identified by the certificates), the client and server computes the shared
key as k — H(g, g%, g7,g*). Moreover, the client outputs the party identified by certg as its peer in the
connection and the server outputs the party identified by cert¢ as its peer. Throughout this problem,
you should consider an active network adversary that is allowed to register a certificate of its own (i.e.,
the adversary has a certificate certy4 for its identity A, which is different from both the client’s identity C
associated with certc and the server’s identity S associated with certg).



(@

(b)

()

(d)

Suppose the server does not sign certc in its reply to the client. Namely, the server computes
Sign(sks, (g%, g”)) instead of Sign(sks, (certc, g%, g”)). Show that there is an identity misbindinng
attack on this protocol.

Suppose the client only signed the server’s certificate and not the Diffie-Hellman shares in the final
message. Namely, the client computes Sign(skc, certs) instead of Sign(skc, (certs, g%, g%)). Show that
an adversary is able to establish a session with the server such that the adversary knows the shared
key k, but the server thinks it is communicating with the party identified by certc (i.e., the client).
Hint: Remember that an active network adversary is allowed to observe (and tamper with) multiple
interactions between the client and the server.

Suppose that the client signed its Diffie-Hellman share in its first message, and dropped the third
message entirely. Namely, the client’s first message is now (g*, certc, Sign(skc, g*)) and the overall
protocol now completes in two rounds. Show that there is an identity misbinding attack on this
protocol.

Suppose that instead of signing the pair (g*, g%), the client and server instead signed g*¥. Explain
why this is a bad idea.

This exercise illustrates that designing AKE protocols is very delicate, and simple modifications will lead
to broken designs.

Problem 6: Time Spent [3 extra credit points]. How long did you spend on this problem set? This is for
calibration purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a)
(b)
(c)
(d)

What was your favorite problem on this problem set? Why?
What was your least favorite problem on this problem set? Why?
Do you have any other feedback for this problem set?

Do you have any other feedback on the course so far?



