
CS 6222: Introduction to Cryptography Spring 2021

Homework 5: Cryptographic Protocols

Due: May 7, 2021 at 5pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.virginia.edu/dwu4/courses/sp21/static/homework.tex

You must submit your problem set via Gradescope. Please use course code D55GP5 to sign up.

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the computing
IDs of all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: Schnorr’s Protocol and Signatures [15 points].

(a) Suppose in Schnorr’s protocol, the challenger sampled the challenge from a set S where |S| = k. Show
that this protocol has soundness error 1/k.

Remark: This shows that to achieve negligible soundness error in Schnorr’s protocol, the challenge
must be samples from a set of super-polynomial size.

(b) Let G be a cyclic group of order n = kq , where k > 1 is a small constant that is relatively prime with q
(e.g., k = 8) and q À k is prime. Let g be a generator of G, and let ĝ = g k ∈G. In this case, ĝ generates
a subgroup of G of prime order q . Consider Schnorr’s protocol defined in the prime order group
generated by ĝ (this coincides with the typical setting in cryptography where we work over a group
of prime order). Namely, on input an instance (ĝ , ĥ = ĝ x ), the prover’s first message is ĝ r where

r
R←−Zq , the verifier’s challenge is t

R←−Zq , and the prover’s response is r +xt ∈Zq . Show that even if
ĥ ∉ 〈ĝ 〉, then a (malicious) prover is still able to convince the verifier to accept with probability that is
negligibly close to 1/k (you can assume that the ratio k/q is negligible). Namely, even if ĥ is not in
the group generated by ĝ , the prover can nonetheless convince the verifier that it knows the discrete
log of ĥ base ĝ (even though the discrete log does not exist in this case).

Remark: This show that Schnorr’s protocol is no longer sound if the base ĝ is not a generator of the
full group G and G has small prime factors. To prevent this attack and recover soundness, the verifier
must additionally check that ĥ is indeed in the group generated by ĝ . This setting is very common in
practice (and should not be glossed over when designing cryptographic systems). For instance, if
we consider groups over the integers, we typically work over a prime-order subgroup of Z∗

p (e.g., the
subgroup of prime order q when p = kq +1 for some constant k) or over an elliptic-curve group with
order kq and small k (in this case, k is referred to as the “cofactor” of the curve).

(c) We saw in lecture that in the Schnorr signature scheme, signing different messages using the same
randomness leaks the secret key. Show that this is also the case for ECDSA.
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Remark: This attack was used to break security on the Sony Playstation 3. It turns out that Sony had
used ECDSA with a fixed string as the randomness to sign software for the PS3. This attack allowed
hackers to extract Sony’s ECDSA signing key and in turn, issue arbitrary firmware updates for the PS3.
Thus, when using ECDSA, it is also critical to derandomize the signing algorithm.

Problem 2: Oblivious Transfer [35 points].

(a) Suppose that in a separate offline phase, a trusted party samples r0,r1
R←− {0,1}` and b

R←− {0,1}. It gives
(r0,r1) to the sender and (b,rb) to the receiver. The pair of values (r0,r1) and (b,rb) is referred to as an
“OT correlation.” Show that the sender and the receiver can use their OT correlation to implement
a two-round oblivious transfer protocol on `-bit messages. Prove that your scheme is correct and
satisfies perfect sender security as well as perfect receiver security.

(b) Instead of relying on a trusted party to generate the OT correlations in the offline phase, show how
the sender and receiver can generate an OT correlation using an OT protocol.

Remark: Observe that this OT protocol is input-independent, and thus can be done before any
protocol execution. Moreover, using a technique called OT extension, the sender and the receiver can
precompute a large number of OTs with very modest cost.

(c) A “1-out-of-k” OT protocol generalizes OT to the setting where the sender has k messages m0, . . . ,mk−1

and the receiver holds an index i ∈ {0, . . . ,k −1}. At the end of the protocol, the receiver should learn
mi while the sender learns nothing. We can generalize the OT correlation construction from Part (a)

to obtain a 1-out-of-k correlation as follows. The trusted party samples r0, . . . ,rk−1
R←− {0,1}` and

an index j
R←− {0, . . . ,k −1}. It gives (r0, . . . ,rk−1) to the sender and ( j ,r j ) to the receiver. Show that

the sender and the receiver can use their OT correlation to implement a two-round 1-out-of-k OT
protocol on `-bit messages. Prove that your scheme is correct and satisfies perfect sender security
and perfect receiver security.

(d) In class, we described a protocol for 1-out-of-2 OT. Show how to construct a 1-out-of-2t OT protocol
(on λ-bit messages) using t invocations of any 1-out-of-2 OT protocol (on λ-bit messages). You can
use a secure PRF F : {0,1}λ× {0,1}λ → {0,1}λ in your construction. Justify the correctness, sender
security, and receiver security of your construction. You do not need to provide formal proofs of
these properties, but your description should appeal to concrete properties of the underlying OT
protocol and security of the PRF. Hint: Your construction should use the 1-out-of-2 OT protocol as
a black box (you do need to rely on any implementation details of the underlying protocol). Start
by having the sender sample 2t independent PRF keys. The sender will use these keys to blind the
messages m0, . . . ,m2t−1.

Problem 3: Regev Encryption [25 points]. In lecture, we described Regev encryption in the setting
where the message is encoded in the most significant bits of the ciphertext. Here, we will consider a
variant where the message is encoded in the least significant bits of the ciphertext. For simplicity, we will
just consider the symmetric setting (but everything generalizes to the public-key setting in the manner
described in lecture). Let the message space be Zp , n be the lattice dimension, q be the modulus, and χ
be the error distribution. Suppose that gcd(p, q) = 1. Note that p and q need not be prime here.

• Setup: Sample and output s
R←−Zn

q .



• Encrypt(s,m): On input a secret key s ∈Zn
q and a message m ∈Zp , sample a

R←−Zn
q and e ← χ, and

output the ciphertext ct= (a,sTa+pe +m).

(a) Show how to define Decrypt(s,ct). Prove the correctness of the resulting scheme. You may assume
that Pr[e ←χ : |e| < q/(2p)−1] = 1.

(b) Show that under the LWEn,q,χ assumption, the above encryption scheme is semantically secure.
(Technically, it is CPA-secure under the LWE assumption, but you do not have to show this.)

Problem 4: Time Spent [3 extra credit points]. How long did you spend on this problem set? This is for
calibration purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course?


