
Thus far
, we

have assumed that parties have a shade key. Where does the shared key come from?

Approached : have a key- distribution center CKDC)

shared key between KDC and each party Pi
if Pi wants to talk to Pj :

-

Pi sends nonce ri (replay prevention) and identifier idi to Pj
-

-

Pj chooses nonce Rj and identifier idj to Pi and KDC

fkaIn -

KDC samples kij and givesL V J

P , P2 - - ' P n often call Ci ← Enc (ki
,Enc , kij) } to Pia

''ticket
"

t, ← MAC (ki
,mac ,

(ri
, rj , idi, idj , Ci)

Cj
← Enc (Kj , Eric , kij)

tj ← MAC lkj.mn. c , Cri , rj , idi , idj, g))
} " B'

nonce's needed to ensure
" freshness

" for session (no replays) and identifiers

needed to bind session key kij to identities idi
, idj

Basic design for Kerberos - only requires symmetric primitives
-

Drawback : KDC must be fully trusted (knows everyone's keys) and is single point of failure (no session setup if KDC

goes offline
!)

Bublic-luycr-yptograph.fi Session setup / key - exchange without a KDC

To develop this
, we

will need to introduce some abstract algebra / number theory .

Definition. A group consists of a set G together with an operation
* that satisfies the following properties

:

-

Closer : If g , ,g£ Gl , then g.
*gaE G

-

Associativity : for all g. , ga, g, E G, g,
* (gigs)

= Cg , * ga) * gs
•

Identity : There exists an element e E G such that e * g
-

-

g
-

-

g
* e for all

g
E G

-

Inverse : For every element gE
6
,
there exists an element g-

'
E 6 such that

g.
* g-

'
= e

-

- g-
'
*

g
In addition

,
we say a group is commutative (or abelian) if the following property also holds :

-Commutative : For all go , ga
E G

, g,
* ga

=

gig ,

f-
called "multiplicative

"

notation
.

Notation : Typically ,
we will use

"

.

"

to denote the
group operation

(unless explicitly specified otherwise)
.
We will write

y
'
to denote g

-

g
-

g
- - -

g (the usual exponential notation)
.

We use
"

I
"

to denote the multiplicative
-

X times

¥ample¥ps : (TR
,
t) : real numbers under addition

(Z
,
t) : integers under addition

(Ip ,
t) : integers modulo p under addition (sometimes written as 2/p2]

There, p is prime
T¥Hu¥p* (an important group

for cryptography) :

Ipt = { x E Ep : there exists g
C- Ep where Xy

= 1 (mod p))
t the set of elements with multiplicative inverses modulo

p

What are the elements in 2p* ?

µ
greatest common

divisor

Bntty : For all positive integers x.y
C- 2

,
there exists integers a , b C- 2 such that axt by

-

- god (x, y) .
Corollary : For prime p , Ipt = { 1,2 , - - -

, p
- I }

.

¥. Take
any X

E { 1,2. . . . , p
- 13

. By Beaut's identity , god (x ,p) = 1 so there exists integers a, b C- 2 where I = axtbp.

Modulo
p ,
this is ax = I (mod p) so a

-

- x
- ' (mod p) .

Coefficients a
,
b in Beaut's identity can be efficiently computed using the extended Euclidean algorithm :

Eudideanalgorithm_ : algorithm for computing ged (a, b) for positive integers a
> b :

relies on fact that god Ca , b) = ged (b, a @od BD :

to see this : take any
a > b

↳
we can write a = b- qtr where q >

I is the quotient and

O E r < b is the remainder

↳ d divides a and b ⇐ d divides b and r

↳ god(a ,b) = god(b , r) = god(b, a (mod b))

gives an explicit algorithm for computing god : repeatedly divide :

god (60,27) : 60 = 2712) t 6 (q
-

- 2
,
r -- 6] us god (60,27) = god (27 , 6)

← ←
27 = 6 (4) t 3 (q

-

- 4
,
r =3] → god (27,6) = god (6,3)

←←
6 = 3 (2) t O (q =L , r = O] → god(6,3) = god (3 , O) =3

"

rewind
"

to recover coefficients in Beaut's identity :
60 = 2712) t 6 f 6=60

- 2712)
yFILTH! / 271694/+3 → 3=27-6.4
-

27 - (60 - 2712114
algorithm ←←

6 = 3 (2) t O = 27 (9) t 6044)
T →
coefficients

Iterations : O(loga) - ie, bit -length of the input (worst case inputs : Fibonacci numbers]

Implication : Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)

[
defined to be the identity element

f- cyclic groups
are commutative

Definition .
A
group G

is cyclic if there exists ager g
such that G = {go , g

'

.
. . .

, g
'"" }

.

Definition. For an element GE G , we write (g) ={ go.gl , g
'"" } to denote the set generated by g (which need not be the

entire set. The cardinality of Lg) is the order of g
lie,

the size of the
"

subgroup
" generated by g)

Example. Consider IF
= { 1,2, 3,4, 5,63 . In this case

,
↳ means that good = 1

(27 = { 1,2
,
4} (2 is not a generator of 25k) cord (2) =3

(3) = { 1,3 , 2,6, 4,53 (3 is a generator of ZF) cord (3) = 6

tagmeme . For a group
6
,
and

any
element

g
E G

,
cord (g) 1161 (the order of

g
is a divisor of 161)

.

↳ For 2p* , this means that ordlg) I p- I for all g
E G

CoroHary(FermaTheorem) : For all x C- Ipt , XP
"

= 1 (mod p)

Proof . 1215×1 = I { 1,2. . . . , p-ist =p - I f for integer ko

By Lagrange's Theorem, ord (x) / p - I so we can write p
- I = k . ord (x) and so XP

"
= (xordtx))

"
= 1k = 1 (mod p)

implication : suppose X E Ipt and we want to compute XY E 2p* for some large integer y
→
p

↳ we can compute this as

×y = ×Y (
mod P

- t)
(mod p)

since XP
"

= I (mod p)

↳ Specifically , the exponents operate modulo the other of the group
↳

Equivalently : group Ig> generated by g is isomorphic to the group (2g ,
t) where q = ord (g)

(g) I (2g , t)

g
" t> x

X times

Notation : g
"

denotes

g-g-i.gg-X
denotes (gx)

"

(inverse of group element gx]

g×
"

denotes GH
")

where X
"

computed mod cord (g)
- need to make sure this inverse exists!

Compqpe¥ : In cryptography , the groups we typically work with will be large leg. , 2256 or 2
"")

-

size of group element
(# bits) : ~ log 161 bits (256 bits / 2048 bits)

-

Group operations in Ipt : log p bits per group
element

addition of mod
p elements : O (log p)

multiplication of mod p
values : naively Oltogp)

karatsuba OClog
""

p
)

Schionhage - Strassen (GMP library) : O (log p log log p log log log p)
best algorithm 040g p log log p) [2019]

↳ not yet practical (> 24096 bis to be faster . . .)

exponentiation : using repeated squaring
:

g , g
'

, g
"

, y
'
, . . . , GHS " , can implement using OG

og p
)

multiplications (O (logs p) with naive multiplication]

↳ timeIspace trade
-offs with more precomputed values

division (inversion) : typically 0 (log
'

p) using Euclidean algorithm (can be improved)

