Thus far, we have assumed that parties have a shared key. Where does the shared key come from?
Approach 1: have a key-distribution center (KDC)

shared key between KDC and each party P_{i}
if P_{i} wants to talk to P_{j} :

- P_{i} sends nonce r_{i} (replay prevention) and identifier id to P_{j}
- P_{j} chooses nonce r_{j} and identifier id j to P; and $K D C$
- KDC samples $k_{i j}$ and gives

$$
\left.\begin{array}{rl}
\text { often called } / c_{i} & \leftarrow \operatorname{Enc}\left(k_{i}, \text { Enc }, k_{i j}\right) \\
t_{i} & \leftarrow \operatorname{MAC}\left(k_{i, M A C},\left(r_{i}, r_{j}, i d_{i}, i d_{j}, c_{i}\right)\right.
\end{array}\right\} \text { to } P_{i}
$$

nonces needed to ensure "freshness" for session (no replay) and identifiers needed to bind session key $k_{i j}$ to identities id,

Basic design for Kerberas - only requires symmetric primitives

- Drawback: KDC must be fully trusted (knows everyone's keys) and is single point of failure (no session setup if KDC goes offline!)

Public-key cryptography: Session setup / key-exchange without a KDC
To develop this, we will need to introduce some abstract algebra/number theory.

Definition. A group consists of a set \mathbb{B} together with an operation $*$ that satisfies the following properties:

- Closure: If $g_{1}, g_{2} \in \mathbb{D}_{1}$, then $g_{1} * g_{2} \in \mathbb{G}$
- Associativity: For all $g_{1}, g_{2}, g_{3} \in \mathbb{B}, g_{1} *\left(g_{2} * g_{3}\right)=\left(g_{1} * g_{2}\right) * g_{3}$
- Identity: There exists an element $e \in \mathbb{G}$ such that $e * g=g=g * e$ for all $g \in \mathbb{G}$
- Inverse: For every element $g \in \mathbb{G}$, there exists an element $g^{-1} \in \mathbb{G}$ such that $g^{*} g^{-1}=e=g^{-1} * g$

In addition, we say a group is commutative (or abelian) if the following property also holds:

- Commutative: For all $g_{1}, g_{2} \in \mathbb{C}, g_{1} * g_{2}=g_{2} * g_{1}$

Notation: Typically, we wall use "." to denote the group operation (unless explictly specified otherwise). We will write g^{x} to denote $\underbrace{g \cdot g \cdot g \cdots g}_{x \text { times }}$ (the usual exponential notation). We use " 1 " to denote the multiplicative identity

Examples of groups: $(\mathbb{R},+)$: real numbers under addition
$(\mathbb{Z},+)$: integers under addition
$\left(\mathbb{Z}_{p},+\right)$: integers modulo p under addition $[$ Sometimes written as $\mathbb{Z} / p \mathbb{Z}]$
here, p is prime
The structure of \mathbb{Z}_{p}^{*} (an important group for cryptography):
$\mathbb{Z}_{p}^{*}=\left\{x \in \mathbb{Z}_{p}\right.$: there exists $y \in \mathbb{Z}_{p}$ where $\left.x y=1(\bmod p)\right\}$
τ the set of elements with multiplicative inverses modulo p

What are the elements in \mathbb{Z}_{p}^{*} ?
Bezout's identity: For all pasitve integers $x, y \in \mathbb{Z}$, there exists integers $a, b \in \mathbb{Z}$ such that $a x+b y=\operatorname{gcd}(x, y)$.
Corollary: For prime $p, \mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$.
Proof. Take any $x \in\{1,2, \ldots, p-1\}$. By Bezout's identity, $\operatorname{gcd}(x, p)=1$ so there exists integers $a, b \in \mathbb{Z}$ where $1=a x+b p$. Modulo p, this is $a x=1(\bmod p)$ so $a=x^{-1}(\bmod p)$.

Coefficients a, b in Bezout's identity can be efficiently computed using the extended Euclidean algorithm:
Euclidean alogithm: algorithm for computing $\operatorname{ged}(a, b)$ for positive integers $a>b$:
relies on fact that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a(\bmod b)$:
to see this: take any $a>b$
\rightarrow we can write $a=b \cdot q+r$ where $q \geqslant 1$ is the quotient and
$0 \leqslant r<b$ is the remainder
$\rightarrow d$ divides a and $b \Longleftrightarrow d$ divides b and r

$$
\rightarrow \operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)=\operatorname{gcd}(b, a(\bmod b))
$$

gives an explicit algorithm for computing ged: repeatedly divide:

$$
\begin{array}{lll}
\operatorname{gcd}(60,27): \quad 60=27(2)+6 & {[q=2, r=6] \leadsto \operatorname{gcd}(60,27)=\operatorname{gcd}(27,6)} \\
27^{2}=6(4)+3 & {[q=4, r=3] \leadsto \operatorname{gcd}(27,6)=\operatorname{gcd}(6,3)} \\
6^{4}=3(2)+0 & {[q=2, r=0] \leadsto \operatorname{gcd}(6,3)=\operatorname{gcd}(3,0)=3}
\end{array}
$$

"rewind" to recover coefficients in Bezant's identity:

Iterations needed: $O(\log a)$ - ie, bittength of the input [worst case inputs: Fibonoci numbers]

Implication: Euclidean algorithm can be used to compute modular inverses (faster algorithms also exist)

Definition. A group \mathbb{G} is cyclic if there exists a generator g such that $\mathbb{G}=\left\{g^{0}, g^{1}, \ldots, g^{|G|-1}\right\}$.
Definition. For an element $g \in \mathbb{G}$, we write $\left\{g \mid=\left\{g^{0}, g^{1}, \ldots, g^{|G|-1}\right\}\right.$ to denote the set generated by g (which need not be the entire set. The cardinality of $\langle g\rangle$ is the order of g (ie., the size of the "subgroup" generated by g)
Example. Consider $\mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}$. In this cave,
$\langle 2\rangle=\{1,2,4\} \quad\left[2\right.$ is not a generator of $\left.\mathbb{Z}_{7}^{*}\right] \quad$ ord $(2)=3$
$\langle 3\rangle=\{1,3,2,6,4,5\} \quad\left[3\right.$ is a generator of $\left.\mathbb{Z}_{7}^{*}\right] \quad \operatorname{ord}(3)=6$
Lagrange's Theorem. For a group \mathbb{G}, and any element $g \in \mathbb{G}$, ord $(g)||G|$ (the order of g is a divisor of $| G \mid$).
\longrightarrow For \mathbb{Z}_{p}^{*}, this means that ord $(g) \mid p-1$ for all $g \in G$
Corollary (Fermat's Theorem): For all $x \in \mathbb{Z}_{p}^{*}, x^{p-1}=1(\bmod p)$
Proof. $\left|\mathbb{Z}_{p}^{*}\right|=|\{1,2, \ldots, p-1\}|=p-1$
By Lagrange's Theorem, $\operatorname{ord}(x) \mid p-1$ so we can write $p-1=k \cdot \operatorname{ord}(x)$ and so $x^{p-1}=\left(x^{\text {ord }(x)}\right)^{k}=1^{k}=1(\bmod p)$
Implication: Suppose $x \in \mathbb{Z}_{p}^{*}$ and we want to compute $x^{y} \in \mathbb{Z}_{p}^{*}$ for some large integer $y>p$
\longrightarrow we can compute this as

$$
x^{y}=x^{y(\bmod p-1)}(\bmod p)
$$

since $x^{p-1}=1(\bmod p)$
\longrightarrow Specifically, the exponents operate modulo the order of the group
\rightarrow Equivalently: group $\langle g\rangle$ generated by g is isomorphic to the group $\left(\mathbb{Z}_{q},+\right)$ where $q=$ ord (g)

$$
\begin{aligned}
& \langle g\rangle \cong\left(\mathbb{Z}_{q},+\right) \\
& g^{x} \mapsto x
\end{aligned}
$$

Notation: g^{x} denotes $\overbrace{g \cdot g \cdot \cdots \cdot g}^{x \text { times }}$
g^{-x} denotes $\left(g^{x}\right)^{-1} \quad$ [inverse of group element g^{x}]
$g^{x^{-1}}$ denotes $g^{\left(x^{-1}\right)}$ where x^{-1} computed $\bmod \operatorname{ord}(g)$ - need to make sure this inverse exists!
Computing on group elements: In cryptography, the grays we typically work with will be large (e.g., 2^{256} or 2^{1024})

- Size of group element (\# bits): $\sim \log |G|$ bits (256 bits $/ 2048$ bits)
- Group operations in $\mathbb{Z}_{p}^{*}: \log p$ bits per group element addition of $\bmod p$ elements: $O(\log p)$
multiplication of $\bmod p$ values: naively $O\left(\log ^{2} p\right)$
Karatsuba $O\left(\log ^{1.21} p\right)$
Schönhage-Strassen (GMP library): $O(\log p \log \log p \log \log \log p)$
best algorithm $O(\log p \log \log p)$ [2019]
\longrightarrow not yet practical ($>2^{4096}$ bits to be faster...)
exponentiation: using repeated squaring: $g, g^{2}, g^{4}, g^{8}, \ldots, g^{1 \log p]}$, can implement using $O(\log p)$ multiplications $\left[O\left(\log ^{3} p\right)\right.$ with naive multipitication]
\longrightarrow time/space trade-offs with more precomputed values
division (inversion): typically $O\left(\log ^{2} p\right)$ using Euclidean algorithm (can be improved)

