Diffie-Hellman key-orchange is an <u>anonymous</u> key-exchange protocol: neither side knows who they are talking to L> vulnerable to a "man-in-the-middle" attack

Alice	Bab	Alice	Eve Bob	Observe Eve can
<u>9</u> ^	\rightarrow	~~~~>	<u>9</u> ^x <u>9</u> ^z ' >	now decrypt all of the messages
/ «97		4	g ² 2 $e^{g^{2}}$	between Allice and
axy	Jary	\checkmark	422 9yr,	Bob and Allice + Bub
J *		a ^{XZ} 2	9 ^{x2} 9 ^{y2}	have no solea!

What we require: <u>authenticated</u> key-exchange (not anonymous) and relies on a root of trust (e.g., a certificate authority) Lo On the web, one of the parties will <u>authenticate</u> themself by presenting a <u>certificate</u>

To build authenticated key-exchange, we require more ingredients - namely, an integrity mechanism [e.g., a way to bind a message to a sender - a "public-key MAC" or <u>digital signature</u>]

- Setup (1^a) → (vk, sk): Outputs a verification key vk and a signing key sk

- Sign (ok, m) -> o: Takes the signing key 5k and a message m and outputs a signature o

-Verify $(vk, m, \sigma) \rightarrow 0/1$: Takes the verification key vk, a message m, and a signature σ , and outputs a bit 0/1Two requirements:

- Correctness: For all messages $m \in M$, $(vk, sk) \leftarrow KeyGen(1^{a})$, then

Pr [Verify (vk, m, Sign (sk, m)) = 1] = 1. [Honestly -generated signatures always verify]

- Unforgeability: Very similar to MAC security. For all efficient adversaries A, SigAdv[A]=Pr[W=]]=reg!(2), where W is the output of the following experiment:

adversary vk $m \in M$ $(vk, sk) \leftarrow KayGen(1^{2})$ $\sigma \leftarrow Sign(sk,m)$

Let $m_1, ..., m_Q$ be the signing queries the adversary submits to the challenger Then, W = 1 if and only if: Verify $(vk, m^*, \sigma^*) = 1$ and $m^* \notin \{m_1, ..., m_Q\}$

Adversary cannot produce a valid signature on a new message.

It is possible to build digital signatures from discrete log based assumptions (DSA, ECDSA)

L> But construction not intuitive until we see zero knowledge proofs (leter this semester)

L> We will first construct from RSA (trapoloor permutations)

We will now introduce some facts on composite-order groups:

Let
$$N = pq$$
 be a product of two primes p, q . Then, $\mathbb{Z}_{N} = \{0, 1, ..., N-1\}$ is the additive group of integers
modulo N. Let \mathbb{Z}_{N}^{n} be the set of integers that are invertible (under multiplication) modulo N.
 $X \in \mathbb{Z}_{N}^{n}$ if and only if $gcd(x, N) = 1$
Since $N = pq$ and p, q are prime, $gcd(x, N) = 1$ unless X is a multiple of p or q:
 $|\mathbb{Z}_{N}^{n}| = N - p - q + 1 = pq - p - q + 1 = (p - 1)(q - 1) = P(N)$
Fielder's phin function
Recall Lagrange's Theorem:
for all $X \in \mathbb{Z}_{N}^{n}$: $\chi^{P(N)} = 1$ (mod N) [called Euler's theorem, but special case of Lagrange's theorem]
important: "ring of exponents" operate modulo $P(N) = (p - 1)(q - 1)$

Hard problems in composite-order groups:

- = <u>Factoring</u>: given N = pq where p and g are sampled from a suitable distribution over primes, output p, q = <u>Computing cube roots</u>: Sample random $X \notin \mathbb{Z}_{N}^{\times}$. Given $y = \chi^{2} \pmod{N}$, compute χ (nod N).
 - L> This problem is easy in \mathbb{Z}_{p}^{*} (when $3 \neq p-i$). Namely, compute 3^{-1} (mod p-i), say using Euclid's algorithm, and then compute $y^{3^{-1}}$ (mod p) = $(\chi^{3})^{3^{-1}}$ (mod p) = χ (mod p).
 - Why does this procedure not work in \mathbb{Z}_{N}^{*} . Above procedure relies on computing \mathbb{S}^{1} (mod $|\mathbb{Z}_{N}^{*}|$) = \mathbb{S}^{1} (mod $\mathbb{P}(N)$) But we do not know $\mathbb{P}(N)$ and computing $\mathbb{P}(N)$ is as hard as factoring N. In particular, if we know N and $\mathbb{P}(N)$, then we an write

$$\begin{cases} N = Pg \\ P(N) = (p-1)(q-1) \end{cases}$$
 [both relations hold over the integers

and solve this system of equations over the integers (and recover p,g)

Hundress of computing cube roots is the basis of the <u>RSA</u> assumption: distribution over prime numbers.

 $\frac{RSA \ assumption}{}: Take \ p, q \leftarrow Primes(1^{2}), and set \ N = pq. Then, for all efficient adversaries A,$ $Pr[x \leftarrow Z_{N}^{*}; y \leftarrow A(N, x) : y^{3} = x] = negl(A)$ more generally, can replace 3 with any e where god(e, q(N)) = 2

Hardness of RSA relies on $\mathcal{P}(N)$ being hard to compute, and thus, on hardness of factoring Rurerie direction factoring $\stackrel{?}{\Longrightarrow}$ RSA is <u>not</u> known)

Hardwess of factoring / RSA assumption: - Best attack based on general number field sieve (GNFS) - runs in time ~ 2 $\tilde{O}(\sqrt[5]{\log N})$ (same algorithm used to break discrete log over Zp*) large key-sizes and computational For 112-bits of security, use RSA-2048 (N is product of two 1024-bit primes) Cost => ECC governally preferred over RSA 128-bits of security, ase RSA-3072 - Both prime factors should have <u>similar</u> bit-length (ECM algorithm factors in time that scales with <u>smaller</u> factor)

RSG problem gives an instantistic of more general ratios called a trapher permitting:
From :
$$\mathbb{Z}_{n}^{*} \to \mathbb{Z}_{n}^{*}$$

From : $\mathbb{Z}_{n}^{*} \to \mathbb{Z}_{n}^{*}$
Given (2000), we can compare $d \in \mathbb{C}^{1}$ (outh PDD). Observe that given d_{r} we can insert First:
From (2000), we can compare $d \in \mathbb{C}^{1}$ (outh PDD). Observe that given d_{r} we can insert First:
From (From (200)) = (X^{e})^A = X^{ed} (out $O(D)$) = $X^{e} = X$ (out N).
Thus, for all $X \in \mathbb{Z}_{n}^{*}$:
From (From (X)) = $(X^{e})^{A}$ = X^{ed} (out $O(D)$) = $X^{e} = X$ (out N).
Trapher permittings: A trapher permittion (PD) on a domain X consists of three algorithms:
Schup (2) \rightarrow (σ_{r} , σ_{h}): Objects phile parametes pp only a trapher that
 $-F(p, X) \Rightarrow Y$: On uppet the phile parametes pp only a trapher that
 $-F(p, X) \Rightarrow X$: On uppet the trapher phile only Y_{r} , outputs $Y \in X$.
 $-F(r, X) \Rightarrow X$: On uppet the trapher that σ_{r} for all $X \in X$.
 $-F(r, X) \Rightarrow X$: On uppet the trapher that $X \in X$.
 $-F(r, X) \Rightarrow X$: The product $X \in X$.
 $-F(r, X) \Rightarrow X$: The product $Y = X$ for all $X \in X$.
 $-F(r, X) \Rightarrow X$: The phile parameters of outputs $X \in X$.
 $-F(r, X) = Y$ for all $Y \in X$.
 $-F(r, X) = X$ for all $X \in X$.
 $-F(r, X) = Y$ for all $X \in X$.
 $-F(r, X) = X$ for all $X \in X$.
 $-F(r, X) = Y$ for all $X \in X$.
 $-F(r, Y, X) = X$ for all $X \in X$.
 $-F(r, Y, X) = X$ for all $X \in X$.
 $-F(r, Y, X) = X$ for all $X \in X$.
 $-F(r, Y, X) = X$ for all $X \in X$.
 $-F(r, Y, X) = X$ for all $X \in X$.
 $-F(r, Y, X) = X$ for all $X \in X$.
 $-F(r, Y, X) = X$ for all $X \in X$.
 $-F(r, Y, X) = X$ for all $Y \in X$.
 $-F(r, Y, X) = X$ for all $Y \in X$.
 $-F(r, Y, X) = X$ for all $Y \in X$.
 $-F(r, Y, X) = X$ for all $Y \in X$.
 $-F(r, Y, X) = X$ for all $Y \in Y$.
 $-F(r, Y, X) = X$ for all $Y \in Y$.
 $-F(r, Y, Y) = X$ for all $Y \in Y$.
 $-F(r, Y, Y) = X$ for all $Y \in Y$.
 $-F(r, Y, Y) = X$ for all $Y = Y$.
 $-F(r, Y, Y) = X$ for $Y = Y$.
 $-F(r, Y, Y) = X$ for $Y = Y$.
 $-F(r, Y) = F(r, Y) = F(r, Y)$. The is a cost of signeture, $Y = Y$.
 $-F(r, Y) = F($