Focus thus for in the course: protecting	communication (e.g., message confidentiality and message integrity)	
Remainder of course: protecting compu	tations _	
Zero-knowledge: a defining idea at the	eart of theoretical cryptography with surprising implications (DSA/ECDEA signatures base	. \
Zero-knowledge: a defining idea at the h	-intuitive, but surprisingly powerful (DSA/ECDBA signatures base	d on ZK!)
→ Showcases the importance and	power of definitions (e.g., "What does it mean to know something?")	
We begin by introducing the notion of a	- "proof system"	
	nvince a verifier that some statement is true	
e.g., "This Sudoku puzzle	has a unique solution" these are all example product of two prime numbers p and q" statements	nples of
The number N is	e product of two prime numbers p and q" statements	5
I know the ouxecte	- log of h base g"	
We model this as follows:	the verifier is assumed to be an efficient aborithm	
prover (X) veritie	$\frac{dx}{dx}(x)$ X: Statement that the prover is trying to prove (known	an to both
	, , , , , , , , , , , , , , , , , , , ,	
	prover and revitier) (> We will write L to denote the TT: the proof of X statements (called a language))
		
7	\Rightarrow b $\in \{0,13$ - given obtainent x and proof π , verifier decides whether to	accept or night
Properties we care about:	able to convince honest verifice of true statements	
	$\leftarrow P(x) : V(x,\pi) = 1 $	
	onvine honest verifier of fake statement	
	$P(x): V(x,\pi) = 1$ $\frac{2}{3}$ Important: We are not restricting	to efficient provers
		,
Typically, proofs are "one-shot" (i.e., single	massage from prover to verifier) and the verifier's decision algorithm is	deterministic
> Languages with these types of proof	systems precisely coincide with NP (proof of statement x is to send NP	withers w)
Construct ND: 120 amount the mult	J. go. Cillans	
Going beyond NP: we augment the mode - Add randomness: the verifier can be		
- Add interaction: verifier can ask "q		
Interactive proof systems [Goldwasser-Mic	ali-Rackoff J:	
prover (x)	(-1) 4.	
	verifier (N)	
	Set of languages that have an	
-	interactive proof system is denoted IP.	
 	languages that	ian be decided
	Theorem (Shanir): IP=PSPACE large class of	space livery
	be foils lange class of	(mgwya :]

Takeoway: interaction and ran	donness is very useful				
L> In fact, enables a new		lae			
Consider following example: Support	se prover wants to convince	revision that N =	pg where p, g are	prime (and seco	ret).
prover (N	١, ٩, ٩)	verifier (N)		'	
, i	$(0, \varphi, \xi)$ $\pi = (\varphi, \xi)$	>			
		√			
		accept if N=98	and reject otherwise		
Proof is certainly complete and a	bound, but now verifier als	o learned the factor	ization of N (r	nay not be desire	able if prover was try;
to convince verifier that N is	a proper RSA modulus (f	or a cryptographic Sch	eme) without never	aling factorization	- in the process
→ In some sense, thi	is proof conveys information	to the verifier [i.e.	, verifier learns som	ething it did no	ot know before seeing
			the proof]	8	0
			1		
Zeno-knowledge: ensure that re	rifier does not learn any-	thing (other than the	. fact that the E	itatement is true	7)
		9			
How do we define "zero-knowle	م و و و المحلون الذي على " عمل	a sation I a "eim	.\"		
TION OF THE WORK SAN HADRE					
Dofinition A. Langue	for a lange	المسلومية المسلومية	م ا در علام	المناس الماسم	£ 0.5 V* Ho.s.
<u>Definition</u> . An interactive proof exists an efficient	f system (1, v/ 15 zero-	L. Il or a l	ethicent cance	MAICIOUS)	verness V, There
exists an etticent	Simulator U such that	The all VET:			
	Viewy* ((P,V)(x)) ?	~ 3(x)			
	random variable denoting t	he set of messages			
	random variable denoting to sent and received by	V* when interacting wi	th the prover PO	n input X	
What does this definition mean					
	this is what V^* sees in th				
	m that only depends on t				
If these two distributions are	indistinguishable, then anythin	y that V* could	have leaned by to	ulking to P, it	could have learned
just by invoking the simulator	itself, and the simulator or	utput only depends o	$n \propto$, which V^* a	Iready knows	
L> In other words, anyth	ning V* could have learned	l (i.e., computed) af	ter interacting with	. P, it could ha	we learned without
ever talking to P!					
Very remarkable definition!					
	can in fact be cons	tructed from OWFs			
More remarkable: Using cryptog	raphic commitments, then ever	y language LEI	.P has a zero-ku	towedge proof	System.
→ Namely, anything that	can be proved can be p	proved in zero-knowle	dge!		(
" 1 0			0		
We will show this theorem for	NP languages Here it s	suffices to construe	t a sinale zero-ka	ouledge mont	evetem for an
NP-complete language. We will			3.3	2 1.20	
1	3-colorable not	t 3-colorable			
	4/3				
	8-0				
2-1.	1 1	, ,		1 2	
3-coloring: given a graph G, ca	an you color the vertices :	so that no adjacent	nodes have the so	ame color.	