
Trivial proof of knowledge : prover sends witness in the ctear to the verifier
↳ In most applications, we additionally require zero

- knowledge

Note : knowledge is a strictly stronger property than soundness
-

↳ if protocol has knowledge error E ⇒ it also has soundness error E (i.e. a dishonest prover convinces an honest verifier of a

false statement with probability at most E)

assume g, he Gprouingknowledgeofdisc.net/og(Schnorr'sprotocoD- where Gi has prime order q

Suppose prover wants to prove it knows ✗ such that h=g€e. prover demonstrates knowledge of discrete log of h base g)

P-verifier-r-Z-pu.gr⇒← c←R2p
z←r£-11T

verify that gt-u.tl
Completeness : if z = rtcx

,
then

zero knowledge only required to hold against an honest verifier

gZ = grtox-grgox-u.li leg . .
View of the honest verifier can be simulated)Honest-VerifierF-ero-knowkdge.fi/dasimua-orasf#famiiar

strategy : run the protocol in
"

reverse
" ) :

on input 1g , h) :
1. sample Z

± Ip
2. sample C

# Ip f uniformly random challenge
3. set u = Ñ/h and output (u, C, Z) } simulated +""""Pt " id""""Y

distributed
I

← chosen so that

uniformly random
as the real transcript with an honest verifier

group element since gZ = a. he
2- is uniformly random relation satisfied by a)( valid proof

What goes wrong if the challenge is not sampled uniformly at random (i.e.
,
if the verifier is dishonest)

Above simulation no longer works (since we cannot sample 2- first)
↳ To get general zero- knowledge, we require that the

verifier first comt to its challenge (using a satirically hiding commitment

for simplicity, we assume
if P* succeeds with probability I

Knowtedge : Suppose P* is (possibly malicious ) prover that convinces honest verifier with probability 1. We construct an extractor as follows:

1. Run the prover
P* to obtain an initial message U .

2. Send a challenge C
,
#
Ip to P? The prover replies

with a response Zi .

3.
"

Rewind
"

the prover
P* so its internal state is the same as it was at the end of step 1. Then , send another

challenge Cz ←RZp to P*. Let Zz be the response of P?
4. Compute and output ✗ = (Z ,

- 2-a) (a-cif c- Zp .



Since P
't
succeeds with probability 1 and the extractor perfectly simulates the honest verifier's behavior

,
with probability 1 , both be

, Ci
,
2-
i)

and Lu , ca, Zz) are both accepting transcripts . This means that

g
Z
'
= u . h

" and
g
⇐

= a. h
"

⇒ q! = HII ⇒ g
Zi tax

= g
Zz tax

a-
with overwhelming probability,

⇒ X = (z ,
- z) (c , - Cz)

- I

C- Ip 9th

Thus
,
extractor succeeds with overwhelming probability.

(Boneh- Shoup , lemma 19.2)

If Pt succeeds with probability E
,
then need to rely on

"

Rewinding Lemma
"

to argue that extractor obtains two accepting
transcripts with probability at least EZ - Yp.

How can a prover
both proveiknowledge and yet be zero- knowledge at the same time?

↳ Extractor operates by
"

rewinding
"

the prover
lit the

prover
has good success probability , it can answer most challenges correctly.

↳ But in the real (actual) protocol , verifier Canet rewind (i.e . . verifier only sees prover on fresh protocol executions) , which can

provide zero- knowledge.

I#fiatipntdi¥g :

f-
client's

..
..

✓ Public verification key
client (x)

secret (credential) server (g, h=g× ) Essentially, the discrete log of h (base g) is
-

the client's " password
"

and instead of sendingc-

- the password in the clear to the server
,
the client

protocol is precisely 3- round
proves in zero

-knowledge that it knows X

Schnorr proof of knowledge of discrete log

Correctness of this protocol follows from completeness of Schnorr 's protocol
(Active) security follows from knowledge property and zero- knowledge
↳
Intuitively : knowledge says that any client that successfully authenticates must know secret X

zero -knowledge says that interactions with honest client i.e
,
the

prover)
do not reveal anything about X

(for active security, require protocol that provides general

(

zero- knowledge rather than just HV2K)


