
Interactive proofs are two-party protocols between a
prover

and a verifier
,
where prover

's goal is to convince verifier that

some statement X is true . This week
,
we consider a generalization to two-party computation:

Alice ( X) Bob (g)
-

µ,,

←

µ,,

A"" ↳ a (secret) input ✗ and Bob has (secret) input

y
and they want to jointly compute flay) without ]I - I
creating their inputs × , y to each other

2

Éampeg : Yao's millionaire problem : Alice and Bob are millionaires and they want to learn which one of them is richer without

revealing to the other their net worth [ in this case flay) = 1 if ✗ >

y
and 0 otherwise ]

Private contact discovery : client has a list of contacts on their phone while Signal (private messaging application) has list of

users that use the service . Client wants to learn list of signal users that are in their contact

list white Signal server should learn nothing.
Private ML: client has a feature vector ✗ while the server has a model M.

At the end
,
client should learn MG) and

server should learn nothing .

Zero Knowledge : Prover has input (x ,w) and verifier has input × . At the end of the protocol , verifier learns RG.co)

while
poorer

learns nothing.

Party 1's Party 2's
output I f output

Let f = (f , , fz) be a two-party functionality, and let * be an interactive protocol for computing f.

↳ We write viewFlay) to denote the view of party i c- {1,23 on a protocol invocation it on inputs ✗ and
y .

Note that viewFlay) is

a random variable containing Party i's input , randomness, and all of the messages Party i received during the protocol execution
.

↳ We write output
" lay) to denote the output of protocol a on inputs ✗ and

y. We will write output
"

Cay) = ( output ,
"
G.y) , outputE Gy))

to refer to the outputs of the respective parties . The value output? G.y) can be computed from view? G.y) .

The protocol I should satisfy the following properties :
-

Correctness : For all inputs ✗
, y
:

Pr [ output?lx.yt-filx.gl/--1.-fsemi-HESecuri-.y:There exist efficient simulators S
,
and Sz such that for all inputs X and

y
{s, /✗ , f. lay)) , flay) } I { viewFlay) , output" cx.gl}

{ sky , fzlx.gl/,flx.y) } I { view:(✗y) , output"(x.gl }

Notes : - Security definition says that
the view of each party can be simulated just given the party's input and its output in the

computation (i.e
, the minimal information that needs to be revealed for correctness). In other words

, no additional information revealed

about other party's input other than what is revealed by the output of the computation .
- Definition does not say other party's input is hidden . Only true if f does not leak the other party's input .
-

Definition only requires simulating the view of the ho_mst party. Thus
, security only holds against a party that is

"
semi -honest

"

or

"

honest- but - curious " : party follows the protocol as described
,
but may try to infer additional information about other party's input based on

messages it receives .



Oftentimes
,
semi- honest security not good enough . Real adversaries can be malicious (ie , deviate arbitrarily from protocol to corrupt the

computation (e.g. , cause honest users to compute the wrong answer
,
or worse, learn information about honest party's secret inputs)

Defining security against malicious adversaries is not easy.
Here is a sketch (informal) of how it is typically done :

Real World Ideal World
-
-

P , (x) Bly) trustedthirdpart.IT/
j t

flag) flxyl
output.

" Gy) output, G.y,
R (x) P2 (y)

Security : An adversary that corrupts Pi in the real world can be simulated by an ideal adversary that corrupts Pi in the ideal world.

Output of real and ideal executions consists of the adversary 's output and the outputs of the honest parties. Ideal execution

designed to capture world where no attacks are possible. Only possible adversarial behavior is
"

lying
" about input to the execution

(output is computed by the honest parties).

Faires : Adversary should not be able to learn outputs of the computation before the honest parties
Imagine a secure auction where adversary learns results first and decides to abort the protocol and claim iietwork failure

"

before )(
honest parties can obtain the results

-

Difficult notion to achieve (beyond the scope of this course)

Durfee : Semi-honest two-party computation

~ this is necessary
and sufficient for general multiparty computation (MPC)!

key-cryptographicbuild.mg#k : oblivious transfer (OT)
sender (mo , m .) receiver (b E {0,13) sender has two messages mo

,
M
,

T receiver has a bit b C- 10,13

- / at the end of the protocol , receiver learns Mb , sender
✓

Mb learns nothing

Correctness : For all messages mo ,m , E fo , 13
"
:

Pr[output
" (Cmo

, mi, b) = (t , Mb)) = I

Se#⇒ : There exists an efficient simulator S such that for all mo
,
m
,

C- {0,13
"

,
be {0,13

S (b
,
Mb) I view# (Cmo,m ,) , b)

Receiver's view can be simulated just given choice bit b and chosen message Mb (message Mi-b remains hidden)
.

Recei#y : There exists an efficient simulator S such that for all mo
,
m

,
C- {0.13

"

and BE 90,13
,

S (mo
,
m

, ) I view , (Cmo ,m .) , b)

Sender's view can be simulated just given its input messages mo
,
m
,
(receiver's choice bit b is hidden)

.



Beta : Let 6 be a prime order group
and H : G→ 90,13

"

be a hash function (modeled as a random oracle) :

sender (mo
,
m
,
E 10,17

" ) receiver (b C- 90,13)

c. EG I>

sbtzphb-gsbfujuew.ca?ayYYsa?!ho
,
h
,

hi-b ← %gsb secret key for his)
c-

check that hoh , = c

rock Ip to ← (gro , H Choro ) ④ Mo)
r
,
I
Ip Ct

,
← (gri , H(hii ) ① mi)

I
v

Mb← H ftp.ob ) ④ Ctb
.
.

Correctness : By construction
,
Ctb!! =⑨b)

Sb
= hbrb and correctness follows

.

Seridersecarity : We construct simulator as follows . On input (b, Mb) :

I . Choose Cer G

L . Choose Sb# Zp and his ← gsb
,
hi-b ← Yhb

3- Choose ro
,
r
,

⇐
Ip and set Ctb← (g

"
,
Mb to tb) where tb = H ( hbrb) and

Cti-b ← Cgrtb , ti-b) ti-b
£ { 0,13

"

Chaim : Under the CDN assumption and modeling H as a random oracle :

S (b , Mb) I view. (Cmo.mil , b) E
we have not formally introduced the random oracle model so will give idea

only :I . On input a CDH challenge (g, g× , g't ) .
2 . Set c =g× . Sample Sb tap , his← gsb and hi-b ← Ygsb .

3
.
Choose rb trap and set Ctb ← Cgrb, Mb ⑦ tis) where tb = H (hbrb)

4
. Set Ct ,-b

← (g? ti-b) where ti-b t lol)
"

Perfect simulation of real / simulated views
,
unless adversary evaluates random oracle at hits = 9×YgsbY , in which case

,
the adversary

can also compute g× 'd = h't-b ' gsb't [formally, the random oracle allows us to extract the value of hitb
,
and solve CPH ]

Receiversecurity : Sender's view in the protocol consists of two uniformly random group elements ho
,
h , such that hoh

,
= C

.
Simulator just

needs to sample hot G and set h
.
← Tho

.
This is a perfect simulation

.

Generate: sender sends a challenge. Receiver chooses a single Ekoamal public Secret keypair for message it wants to decrypt. This uniquely
defines the other public key ( and receiver is not able to compute the secret key efficiently) . Sender then encrypts both messages

and receiver is able to decrypt exactly one of them. Other message hidden by semantic security of ElGamal.

Can also construct 2- message OT without random oracles from DDH (Naor -Pinhas)
↳ Many other constructions also possible - OT is a core building block in crypto , and in particular, complete for MPC


