Reasons to study post-quantum cryptography:

- 1. Protect confidentiality of today's computations against potential future threat
- 2. Standards take a long time to hevelop and deploy, so should start now
 - → NIST has initiated a multi-year initiative to develop and standardize post-quantum key-exchange and signatures (currently in 2nd year of 6-year initiative)
 - L> Google recently piloted an experiment involving post-quartur key exchange in Chrome (using a "best of both worlds" approach where key derived from mix of classic key exchange and post-quantum key exchange)
- 3. New kinds of mathematical structures and assumptions opportunity to build cryptography up from scratch again!

Our focus : lattice-based cryptography

Definition. An n-dimensional lattice L is a "discrete additive subspace of TR":

- 1. Discrete: every XER" has a neighborhood in TR" where it is the only point
- 2. Additive subspace: O'EL and for all x, y EL, -x eL and x+y EL
- Example: the integer lattice \mathbb{Z}^n , the "q-ary" lattice $q \mathbb{Z}^n$ (i.e., the set of vectors where each entry is an integer multiple of q)

While most (non-trivial) lattrees are infinite, they are finitely-generated by taking integer linear combinations of a finite collection of basis vectors $B = \{b_1, \dots, b_k\}$: $r - r(a) = R \cdot \pi^k = \{S_{r,rer}\alpha; b_i : \alpha_i \in \mathbb{Z} \text{ for all } i \in [k]\}$

$$\mathcal{L} = \mathcal{L}(B) = B \cdot \mathbb{Z}^{N} = \{ \sum_{i \in (L)} \alpha_{i}; 0; \cdots \alpha_{i} \in \mathbb{Z} \text{ for all } i \in [k] \}$$

Example over R:

Computational problems:

- for simplicity, we will use the loo-nor Thortest vector problem (SVP): Given a basis B for a lattice L = L(B), find a shortest <u>non-zero</u> vector $v \in L$ - Approximate SVP (SVPy): Given a bosis B for a lottice L=L(B), find a non-zero vector v eL such that IIVII < Y. X. (L), where $\lambda_1(L)$ denotes the norm of the shortest non-zero vector in L function of lattice dimension n $\overline{}$ Decisional approximate SUP (Gap SVPd, N): Given a basis B for a lattice L = L(B) where either $\lambda_1(L) \leq d$ or $\lambda_1(L) \geq 3.d$, decide which is
 - the case

Many other lattice problems, but these should provide a flasor for what lattice problems look like Approximation factor Y determines hardness of problem:

- $$\begin{split} & Y = O(1) : NP-hard \\ & -\gamma = \delta(n) : useful for cryptographic constructions } for lattice dimension n \\ & -\gamma = 2^{n \log \log \gamma/\log n} : polynomial time \\ \end{split}$$

Learning with Errors (LWE): The LWE problem is defined with respect to lattice parameters
$$n_1m_1q_1X$$
, where X is an error distribution
over Zq (offentines, this is a discrete Gaussian distribution over Zq). The (WEnnyx assumption states
that for a random choice $A \ll Z_q^{n,sm}$, $S \And Z_q^2$, $e \leftarrow X_1^m$ the following two distributions are computations
indistruguishable:
 $(A, S^TA + e^T) \stackrel{\sim}{\sim} (A, r)$
where $r \twoheadleftarrow Z_q^n$.

<u>LWE as a lottice problem</u>: The search version of LWE essentially asks one to find s given $s^{T}A + e^{T}$. This can be viewed as solving the "bounded-distance decodimy" (BDD) problem on the g-ary lattice $L(A^{T}) = \{s \in \mathbb{Z}_{q}^{n} : A^{T}s\} + q \mathbb{Z}^{n}$ i.e., given a point that is close to a lattice dement $s \in L(A^{T})$, find the point s

Symmetric enception from Live (for binary-valued russages) [Regev]
Setup (1^A): Sample
$$s \stackrel{e}{=} Z_{g}^{2}$$
.
Encrypt (S, ct): Output $a \stackrel{e}{=} Z_{g}^{2}$ and $e \stackrel{e}{=} X$. Output (a, $s^{Ta} + e + \mu \cdot \lfloor \frac{9}{2} \rfloor$).
Decrypt (S, ct): Output $\lfloor ct_{2} - s^{T}ct_{1} \rfloor_{2}$
"rounding
operation" $\lfloor X \rceil_{2} = \begin{cases} 0 & \text{if } -\frac{9}{4} \le x \le \frac{9}{4} \\ 1 & \text{otherwise} \end{cases}$
 $take x \in Z_{g}$ to be representative between $\frac{-1}{2}$ and $\frac{9}{2}$
 $\frac{9}{2}$
Correctness: $ct_{2} - s^{T}ct_{1} = s^{Ta} + e + \mu \cdot \lfloor \frac{1}{2} \rfloor - s^{T}a$

$$\frac{\text{Correctionss}}{\text{Equivity}}: By the Liven assumption, (a, s^{T}a+e) \approx (a, r)$$

$$\frac{\text{Correctionss}}{(a, s^{T}a+e+\mu, \lfloor \frac{1}{2} \rfloor)} \approx (a, r+\mu, \lfloor \frac{1}{2} \rfloor)$$

$$\frac{\text{Correctionss}}{(a, s^{T}a+e+\mu, \lfloor \frac{1}{2} \rfloor)} \approx (a, r+\mu, \lfloor \frac{1}{2} \rfloor)$$

$$\frac{\text{Correctionss}}{(a, s^{T}a+e+\mu, \lfloor \frac{1}{2} \rfloor)} \approx (a, r+\mu, \lfloor \frac{1}{2} \rfloor)$$

$$\frac{\text{Correctionss}}{(a, s^{T}a+e+\mu, \lfloor \frac{1}{2} \rfloor)} \approx (a, r+\mu, \lfloor \frac{1}{2} \rfloor)$$

$$\frac{\text{Correctionss}}{(a, s^{T}a+e+\mu, \lfloor \frac{1}{2} \rfloor)} \approx (a, r+\mu, \lfloor \frac{1}{2} \rfloor)$$

$$\frac{\text{Correctionss}}{(a, s^{T}a+e+\mu, \lfloor \frac{1}{2} \rfloor)} \approx (a, r+\mu, \lfloor \frac{1}{2} \rfloor)$$

 $\begin{array}{c|c} \underline{Observe}: \mbox{ this encryption scheme is additively homomorphic (over \mathbb{Z}_2):} & (a_1, \ S^Ta_1 + e_1 + \mu_1 \cdot \lfloor \frac{q}{2} \rfloor) \implies (a_1 + a_2, \ S^T(a_1 + a_2) + (e_1 + e_2) + (\mu_1 + \mu_2) \cdot \lfloor \frac{q}{2} \rfloor) \\ & (a_2, \ S^Ta_2 + e_2 + \mu_2 \cdot \lfloor \frac{q}{2} \rfloor) \\ & decryption \ then \ computes & (\mu_1 + \mu_2) \cdot \lfloor \frac{q}{2} \rfloor + e_1 + e_2 \\ & (\mu_1 + \mu_2) \cdot \lfloor \frac{q}{2} \rfloor + e_1 + e_2 \\ & which \ when \ rounded \ yields \ \mu_1 + \mu_2 \ (mod \ 2) \ provided \ that \ |e_1 + e_2 + 1| < \frac{q}{4} \end{array}$

	Setup:	$A \leftarrow \mathbb{Z}_{q}^{n \times m}$	х – Т	<u>م</u> ريد	put pk = (A, F)	a subset sum of e	r
	· •	$S \stackrel{R}{\leftarrow} \mathbb{Z}_{g}^{n}$	ธ [ั] ← ร [₹] А + €		sk = 5			
Regeri's public-kay encryption scheme		e ← χ ^r č	1 can be vi	ewed as r	n encryptions	of 0 under	- the symmetric schem	e with secret key s
	Encrypt (pk, M):							
		output (A	r, b ^τ r + μ· l	<u>م</u>				
	Decrypt (sk, ct): output [c=	52- STC+12					
		, ,						

 $\frac{Correctness}{C}: Ct_2 - s^{2}Ct_1 = b^{1}r + \mu \cdot L^{2}I - s^{1}Ar = s^{1}Ar + e^{1}r + \mu \cdot L^{2}I - s^{1}Ar$ $= \mu \cdot \lfloor \frac{4}{2} \rfloor + e^{7}r$ if $|e^{7}r| < \frac{4}{4}$, then decryption succeeds (since e is small and r is binary, $e^{7}r$ is not large: $|e^{7}r| < m||e||||r|| = m||e||)$

 $\frac{\text{Security (Sketch)}: \text{ Under LWE assumption public key}}{(A, s^TA + e^T) \approx (A, u)} \quad \text{where } A \stackrel{R}{=} \mathbb{Z}_{q}^{n\times m}, u \stackrel{R}{=} \mathbb{Z}_{q}^{m} }$ $By \text{ the `leftover hash lemma,'' if we sample } A \stackrel{R}{=} \mathbb{Z}_{q}^{n\times m}, u \stackrel{R}{=} \mathbb{Z}_{q}^{n}, r \stackrel{R}{=} \{0,1\}^{m} \text{ where } m > 2n \log g$ $(Ar, u^Tr) \approx (v, w) \text{ where } v \stackrel{R}{=} \mathbb{Z}_{q}^{n} \text{ and } w \stackrel{R}{=} \mathbb{Z}_{q}$ $\Longrightarrow \quad b^Tr \text{ in ciphertext functions as a one-time pad}$