Reasons to study past-quantum cryptography:

1. Protect confidentiality of today's computations against potential future threat
2. Standards take a long time to develop and deploy, so should start now
\rightarrow NIST has initiated a multi-year initiative to develop and standardize post-quantum key-exchange and signatures (currently in 2nd year of 6-year initiative)
\rightarrow Google recently pibted an experiment involving post-quantun key exchange in Chrome (using a "best of both worlds" approach where key derived from mix of classic key exchange and post-quantum key exchange)
3. New kinds of mathematical structures and assumptions - opportunity to build crppography up from scratch again!

Our focus: lattice-based cryptography

Definition. An n-dimensional lattice \mathcal{L} is a "discrete additive subspace" of \mathbb{R}^{n} :

1. Discrete: every $x \in \mathbb{R}^{n}$ has a neighborhood in \mathbb{R}^{n} where it is the only point
2. Additive subspace: $0^{n} \in \mathcal{L}$ and for all $x, y \in \mathcal{L},-x \in \mathcal{L}$ and $x+y \in \mathcal{L}$

Example: the integer lattice \mathbb{Z}^{n}, the "q-ary" lattice $q \mathbb{Z}^{n}$ (i.e., the set of vectors where each entry is an integer multiple of q)

While most (non-trivial) lattices are infinite, they are finitely-generated by taking integer linear combinations of a finite collection of basis vectors $B=\left\{b_{1}, \ldots, b_{k}\right\}$:

$$
\mathcal{L}=\mathcal{L}(B)=B \cdot \mathbb{Z}^{k}=\left\{\sum_{i \in(t)} \alpha_{i} b_{i}: \alpha_{i} \in \mathbb{Z} \text { for all } i \in[k]\right\}
$$

Example over \mathbb{R}^{2} :

Computational problems:

- Shortest vector problem (SUP): Given a basis B for a lattice $\mathcal{L}=\mathcal{L}(B)$, find a shortest non-zero vector $v \in \mathcal{L}$ will are the losinom
- Approximate SUP $\left(S U P_{\gamma}\right)$: Given a basis B for a lattice $\mathcal{L}=\mathcal{L}(B)$, find a nun-zero vector $v \in \mathcal{L}$ such that $\|v\| \leqslant \gamma \cdot \lambda_{1}(\mathcal{L})$, where $\lambda_{1}(\mathcal{L})$ denotes the norm of the shortest non-zero vector in \mathcal{L} τ approx factor typically
- Decisional approximate SUP (GapSUPd, γ): Given a basis B for a lattice $\mathcal{L}=\mathcal{L}(B)$ where either $\lambda_{1}(C) \leqslant d$ or $\lambda_{1}(C) \geqslant \gamma \cdot d$, decide which is the care
Many other lattice problems, but these should provide a flavor for what lattice problems look like
Approximation factor γ determines hardness of problem:
$-\gamma=O(1)$: NP-hard
\}for lattice dimension n
$-\gamma=\tilde{O}(n)$: useful for cryptographic
$-\gamma=2^{n \log \log n / \log n}:$ polynomial time

Learning isth Errors (LWE): The LUE problem is defined with respect to lattice parameters n, m, q, x, where X is an e error distribution over \mathbb{Z}_{q} (oftentimes, this is a discrete Gaussian distribution over \mathbb{Z}_{q}). The $\left(W E_{n, m} x\right.$ assumption states that for a random choice $A \leftarrow \mathbb{Z}_{q}^{n \times m}, S^{R} \mathbb{Z}_{\hat{q}}^{n}, e \leftarrow X_{1}^{m}$, the following two distributions are computational indistraywishable:

$$
\left(A, s^{\top} A+e^{\top}\right) \approx(A, r)
$$

where $r \stackrel{R}{\mathbb{Z}} \mathbb{Z}_{q}^{m}$.
$L W E$ as a lattice poddem: The search version of LWE essentially asks one to find s given $s^{\top} A+e^{\top}$. This can be viewed as solving the "bounce d-distance decoding" (BDD) problem on the q-any lattice

$$
\mathcal{L}\left(A^{\top}\right)=\left\{s \in \mathbb{Z}_{q}^{n}: A^{\top} s\right\}+q \mathbb{Z}^{n}
$$

ie., given a point that is dose to a lattice dement $s \in L\left(A^{T}\right)$, find the point s
Symmetric encryption from LWE (for binary-valued russange) [Regex]
Setup $\left(1^{\lambda}\right):$ Sample $s^{\circledR} \mathbb{Z}_{\hat{q}}$.
Encrypt ($s, \mu):$ Sample $a \mathbb{E}^{2} \mathbb{Z}_{q}^{n}$ and $e \leftarrow x$. Output $\left(a, s^{\top} a+e+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)$.

$$
\operatorname{Decxppt}(s, c t): \text { Output } \underbrace{\left\langle c t_{2}-s^{\top} c t_{1}\right]_{2}}_{\begin{array}{c}
\text { "rounding } \\
\text { operation" }
\end{array}} \quad \underset{\uparrow}{\langle x]_{2}}= \begin{cases}0 & \text { if }-\frac{9}{4} \leqslant x<\frac{9}{4} \\
1 & \text { otherwise }\end{cases}
$$

Visually:

Correctness:

$$
\begin{aligned}
c t_{2}-s^{\top} c t_{1} & =s^{\top} a+e+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor-s^{\top} a \\
& =\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor+e
\end{aligned}
$$

if $|e|<\frac{9}{4}$, then decryption recovers the correct bit
Security: By the $L W E_{n, q, x}$ assumption, $\left(a, s^{\top} a+e\right) \approx(a, r)$ where $r^{2} \mathbb{Z}_{q}$. Thus.

$$
\left(a, s^{\top} a+e+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor\right) \approx\left(a, r+\mu \cdot\left\lfloor\frac{9}{2}\right\rfloor\right)
$$

$\frac{q}{2}$ encoding" of message 1
(message encrypted in "most significant bits" of the ciplertoxt) \longrightarrow will see variant in HWS
$\tau_{r}: \mathbb{Z}_{q}$: one tine pad encruptor of the message μ
Observe: This encerppion scheme is additively homomesphic (over $\left.\mathbb{Z}_{2}\right)$:

$$
\begin{aligned}
& \left(a_{1}, s^{\top} a_{1}+e_{1}+\mu_{1} \cdot\left\lfloor\frac{q}{2}\right\rfloor\right) \\
& \left(a_{2}, s^{\top} a_{2}+e_{2}+\mu_{2} \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)
\end{aligned} \Rightarrow\left(a_{1}+a_{2}, s^{\top}\left(a_{1}+a_{2}\right)+\left(e_{1}+e_{2}\right)+\left(\mu_{1}+\mu_{2}\right) \cdot\left\lfloor\frac{q}{2}\right\rfloor\right)
$$

decryption then computes

$$
\left(\mu_{1}+\mu_{2}\right) \cdot\left\lfloor\frac{q}{2}\right\rfloor+e_{1}+e_{2}
$$

which when rounded yields $\mu_{1}+\mu_{2}(\bmod 2)$ provided that $\left|e_{1}+e_{2}+1\right|<\frac{9}{4}$

Idea: We will include encryptions of 0 in the public key and refresh ciphertexts by taking a subset sum ot encryptions of 0 :

Correctness:

$$
\begin{aligned}
c t_{2}-s^{\top} c t_{1}=b^{\top} r+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor-s^{\top} A r & =s^{\top} A r+e^{\top} r+\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor-s^{\top} A r \\
& =\mu \cdot\left\lfloor\frac{q}{2}\right\rfloor+e^{\top} r
\end{aligned}
$$

if $\left|e^{\top} r\right|<\frac{9}{4}$, then decryption succeeds (since e is small and r is binary, $e^{\top} r$ is not large : $\left|e^{i} r\right|<m\|e\|\|r\|=m\|e\|$)

Security (Sketch): Under LWE assumption public key

$$
\left(A, s^{T} A+e^{T}\right) \approx(A, u)^{\prime} \text { where } A^{R} \mathbb{Z}_{q}^{n \times m}, u^{R} \mathbb{Z}_{q}^{m}
$$

By the "leftover hash lemma," if we sample $A A^{R} \mathbb{Z}_{q}^{n \times m}, a{ }^{R} \mathbb{Z}_{q}^{n}, r{ }^{R}\left\{\{0,1\}^{m}\right.$ where $m>2 n \log q$ $\left(A r, u^{\top} r\right) \approx(v, w)$ where $v \stackrel{R}{\leftarrow} \mathbb{Z}_{q}^{n}$ and $w^{R} \mathbb{Z}_{q}$
$\Rightarrow b^{\top} r$ in ciphertext functions as a one-time pad

