
short-I-egersow-ions-SI.io The SIS problem is defined with respect to lattice parameters n , m , q and a norm bound p . The SISn.mg,p

problem says that for A# 2g
"

? no efficient adversary can find a non-zero vector ✗ E 2m where

Ax = 0 C- Zog and 11×11 Ep [We will use lcs norm : 1141--1141 is = maxi hit]

In lattice- based cryptography, the lattice dimension n will be the primary security parameter .

Notes: -The norm bound p
should satisfy PEG .

-

We need to choose m
, p to be large enough so that a solution does exist.

↳ When m = Aln log g) and p21 , a solution always exists
.
In particular, when MZ Tn log q7 , there always exists

E- recall that we are

✗ c- {-1,0 , 13m such that A-✗ = 0 : using the ks norm (unless otherwise noted)
-

There are 2m 7 2^1%8 =

of
"

vectors
y

C- {0113m } By a counting argument , there exist

-

since Ay C- Zq
"

,
there are at most qn possible outputs of Ay y, =/ yz C- {0,13m such that Ay, = Aya

- Thus
,
if we set ✗ = y,

-

yz C- { -10,13? then Ax = Aly, -yz)
= Ay, - Ayz = 0 C- 2g

"

SIS as a lattice problem : given A # 2g
"'m

, find non-zero ✗ c- Zqm such that A ✗ = 0 C- 2g
" and 11×11<-13 .

↳ can be viewed as an average
- case version of finding short vectors in a

"

q
- ary

"

lattice :

Lt (A) = { 2- c- zm : Az = 0 (mod g) }
Notice that by construction

, qZm c- Lt (A)

← "

g- ary
" lattice (e.g. , vectors where all entries are integer multiples of g)

HardnessofSIS_ : Ajtai first showed (in 1996) that a_Ée hardness of SIS can be based on worst-case hardness of certain

lattice problems ⇒ long sequence of works understanding and improving the worst - case to average
- case reductions

_ypiÉ : Let n be the lattice dimension
.
For

any m= poly (n) , norm bound p > 0
,
and sufficiently large q 713

- poly (n) ,
Then

,
the SISmm ,qp problem is at least as hard as solving Gapsvpy on an ar-bi-rw.ir- dimensional lattice

for V =p
.

polyln).
↳ i.e.

, solving SIS is as hard as approximating Gap SVP in the w# case !

We can use SIS to construct a collision-resistan-hash-funt.cn (CRHF) .

Definition. A keyed hash family H : K ✗ ✗ → Y is collision- resistant if the following properties hold :
-

Compressing:/ Y / < 1×1
-

cot-ision-E-a.to For all efficient adversaries A :

Pr [KIK ; (✗ , ✗
' I ← A (1? K) : H(k,✗)=H(k,x') and ✗ =/ ✗

' ] = negl (7) .

We can directly appeal to SIS to obtain a CRHF :

H : zq•×m ✗ { 0,13m → Ign
where we set m > In log q7 .

In this case , domain has size 2M > 2h ↳ &
= q^ , which is the size of the output space. Collision- resistance

follows assuming ST-sn.m.q.is for
any p 7 ÑqÑ



The SIS hash function supports efficient local updates :

suppose you
have a public hash h = HH) of a bit-string ✗ c- {0,13? Later

, you want to update ✗ ↳ ×
'
where ✗ and ✗

'

only
differ on a few indices leg, updating an entry in an address book). For instance

, suppose ✗ and ×
'

differ only on the first bit

leg. , ✗ , = 0 and ✗ i = 1)
.

Then observe the following
h = Hlk , ✗I = A. X

M

= # ¥ . . . fam)¥) = I ✗ i ai = Ixia; since ×
,

-

- o

item] i --2

h
'
= Hlk , ✗ 1) = A. ✗

'

M

= I xiai = Xia ,
1- § ✗i

'
ai = a

,
+ Ixia; = a, th since ✗i = Xi for all i 72

1- Elm] i=z i=2

Thus
,
we can easily update h to h

'

by just adding to it the first column of A without Crelcomputiny the full hash function
.

The SIS assumption can also serve as the basis for digital signatures
- to develop this

,
we will first need to introduce lattice

trapdoors . Will define them first and construct them later
.

I-nhomogeneous-SI.se :
given

A f- Zq
""

and
y
f- 2g

"

, find ✗ c- Zqm such that Ax -- y
c- 2g
"

and 11×11 t p

It turns out that this can actually be used as a trapdoor function . Namely, there exist efficient algorithms
- Trap Gen (mm , q, p)

→ (A
, tda) : On input the lattice parameters mm , q , the trapdoor -generation algorithm outputs a matrix

A c- zq"m and a trapdoor 1-da
- ta (x) → y : On input ✗ c- Zqm , computes y

= AXE Zai
- FA

"

(tda
, g) → ✗ : On input the trapdoor tda and an element y

c- Zq^ ,
the inversion algorithm outputs a value

11×11 Ep

Moreover
,
for a suitable choice of mm ,q, p , these algorithms satisfy the following properties :

solution to this system from a discrete-

For a" YE 28^1 fA"(tdA , y) outputs ✗ c- zqn such that 11×1, sp and A×=y ←
/
in fact

' more general : can sample a

Gaussian distribution ( sampling needed to
-

The matrix A output by TrapGen is statistically close to uniform over Zq^×m
ensure solution does not leak trapdoor)

Digital signatures from lattice trapdoors : We can use lattice trapdoors to obtain a digital signature scheme in the random oracle model

(this is essentially an analog of RSA signatures)
:

- KeyGen : CA
, tda) ← Trap Gen Gim, q , p)

✗
just as in RSA

-FDH

Output vk= A and sk = tda
- Sign (sk , m) : Output 0 ← fni

'

(tda
,
Hlm))

.

Here
,
H :{0,13*-2 Iq

"

is modeled as a random oracle (ideal hash function)
-

Verify lvk, m ,
o) : check that 11011 Ep and that fa (o) = H (m)

.

Hardness reduces to hardness of inhomogeneous SIS (similar proof as RSA - FDH) . Intuition : essentially solving inhomogeneous
SIS instance- Matrix A output by keyGen is uniformly random (property of key Gen)

-

To forge signature on message m*, adversary needs to find short ✗ such that Ax=y where y=H)whichisuniform\
-

Format : need to rely on random oracle to embed inhomogeneous SIS challenge + respond to signing queries
(ask in office hours for more details)



Constructingtticetrapdoors :
"

gadget trapdoors
"

First
, we define the

"

gadget
"
matrix (there are actually many possible gadget matrices

- here
, we use a common one sometimes called

the "

powers- of
- two

"
matrix) :

G = (
1 2 4 8 - - - zllogq]

I 2 4 - . . 211%81
"

"

I 2 4 . . . 24781 )
Each row of G consists of the powers

of two (up to
211%8] )

.
Thus

,
GE 2g

" " "%? Oftentimes
,
we will just write

G C- Ign
'm

where m > n Lloggt . Note that we can always pad G with all- zero columns to obtain the desired dimension
.

Observation : SIS is easy with respect to G :

G. |÷g) = 0 C- 2g ⇒ norm of this vector is 2

Inhomogeneous SIS is also easy with respect to G : take
any target rector y

C- If .
Let Yi,uggs , . . .,yi, , be the binary decomposition of

yi
the ith component of g) . Then

,

Yi, I
'

Hogg] .

Yi, 2
[ 2J YIi. yi.si
I =L

Yi, Llogqt Yz

G. 1" =/ : = ( ;) =

y
i Llogqt

•

,, , zayn;) yn
i j=i

Yn, I
i

yn,, ,,

)
← Observe that this is a 0/1 vector (binary valued vector), so the la- norm is exactly 1

We will denote this
"

bit- decomposition
"

operation by the function G-1 : 2q^ → {0,13m
F-

important : G-
'
is net a matrix (even though G is) !

Then
,
for all

y
C- 2g , G. G-

'

(y)
=

y
and I / G-' (g)11=1. Thus , both SIS and inhomogeneous SIS are easy with respect to

the matrix G.

We now have a matrix with a public trapdoor. To construct a secret trapdoor function (useful for cryptographic applications , we will

"

hide" the gadget matrix in the matrix A
,
and the trapdoor will be a "short" matrix fire

, matrix with small entries) that recovers the

Gadget.

More precisely, a gadget trapdoor for a matrix At 25k is a short matrix RE 2g
""

such that

A.12=6 c- zgnan
We say that R is

"

short
"

if all valves are small
. [we will write HRH to refer to the largest value in R ].



Suppose we know R c- Zqm×m such that AR = G.
We can then define the inversion algorithm as follows :

- fni
'

(tda = R
, y

c- Ign ) : Output ✗ = R . G-
' (y) . Importance: When using trapdoor functions in a setting where the

adversary can see trapdoor evaluations, we actually need toWe check two properties : randomize the computation of fat .
1. Ax = AR . G-

'

(g) = Go G-
' (y)

=

y so ✗ is indeed a valid pre
-image otherwise

, we lead the trapdoor .
2. 11×11 = HR • G-

'

(g) 11 £ m.HR/1llG-YylH--m.llRH But this basic scheme illustrates

the main ideas.. -
Thus, if HRH is small

,
then 11×11 is also small (think of p as a large polynomial in n) .

Remaining : How do we generate A together with a trapdoor (and so that A is statistically close to uniform)?

Many techniques to do so; we will look at one approach using the
"

leftover hash lemma
"

(also used when
arguing security of Regev's PKE scheme)

sample A- f- 2g
""

and Ñ← {0,13mm
.

Set A = [ A- I A-pit G) c- zqn
✗2m

2m ✗m

Output A E 2g
" 'm

,
+da = R = [¥ ] C- 2g

By construction that AR = - TAR + A-Rt G = G
,
and moreover HRH = 1

.

By leftover hash lemma
,
for m = Olnlog g) , (A- , ÑÑ) is indistinguishable from (ATU) where HE 2g

""


