So far... we have developed public-key encryption + signatures from lattices - what remains: analogy of Diffie-Hellman?


Under the LWE assumption:
$(A, A S+E) \approx U$ where $U e^{R} \mathbb{Z}_{q}^{n \times m} \quad$ [note: requires that $L W E$ holds even if $S$ is sampled from error
$\rightarrow$ shared bey then derived by $S^{\prime} B+E^{\prime \prime} \rightarrow$ by $L W E,\left(B, S^{\prime} B+E^{\prime \prime}\right) \approx\left(B, U^{\prime}\right)$ distribution]
$\rightarrow$ shared bey is derived from random matrix (similar to Diffie-Hellman, the key material is hashed to derive a symmetric key)

Practical considerations:

- Key reconciliation: presence of noise means Alice and Bob may end up with inconsistent keys Bob sends a "hint" with his message to reconcile any errors and ensure exact key agreement
- Message size: large matrix $A$ is uniform - can be derived from a short seed (using PRG)
$\rightarrow$ justifiable wing the random oracle model

Above construction relies on security of LWE where the secret key is sampled from error distribution
$\rightarrow$ This is LWE in "Hermite normal form" and is just as hard as standard LWE
Consider LWE challenge $(A, b)$ where $A 尺 \mathbb{Z}_{q}^{n \times m}, b \in \mathbb{Z}_{q}^{m}$
Write $A=\left[A_{1} \mid A_{2}\right]$ where $A_{1} \in \mathbb{Z}_{q}^{n \times n}, A_{2} \in \mathbb{Z}_{q}^{n \times(m-n)}$; similarly write $b^{\top}=\left[b_{1}^{\top} \mid b_{2}^{\top}\right]$ where $b_{1} \in \mathbb{Z}_{q}^{n}$
If $A_{1}$ is invertible, then define $b_{2} \in \mathbb{Z}_{q}^{m-n}$

$$
\bar{A}=-A_{1}^{-1} A_{2} \quad \bar{b}^{\top}=b_{1}^{\top} \bar{A}+b_{2}^{\top}
$$

If $b^{\top}=s^{\top} A+e^{\top}$, then

$$
\begin{aligned}
& s^{\top}\left[A_{1} \mid A_{2}\right]+\left[e_{1}^{\top} \mid e_{2}^{\top}\right]=\left[b_{1}^{\top} \mid b_{2}^{\top}\right] \\
& \Rightarrow \bar{b}^{\top}=b_{1}^{\top} \bar{A}+b_{2}^{\top}=\left(s^{\top} A_{1}+e_{1}^{\top}\right) \bar{A}+s^{\top} A_{2}+e_{2}^{\top} \\
&=s^{\top} A_{1} \bar{A}+s^{\top} A_{2}+e_{1}^{\top} \bar{A}+e_{2}^{\top} \\
&=s^{\top} A_{1}\left(-A_{1}^{-1} A_{2}\right)+s^{\top} A_{2}+e_{1}^{\top} \bar{A}+e_{2}^{\top} \\
&=e_{1}^{\top} \bar{A}+e_{2}^{\top}
\end{aligned}
$$

$\Rightarrow(\bar{A}, \bar{b})$ is an instance of normal-form LWE
( $A_{1}^{-1} A_{2}$ is uniform since $A_{2}$ is uniform and $A_{1}^{-1}$ is invertible)

If $b^{\top} \leftrightarrow \mathbb{Z}_{q}^{M}$, then $b_{1}^{\top} \bar{A}+b_{2}^{\top}$ is uniform (by $b_{2}$ )
Thus, normal-form LWE at least as hard as standard $\angle W E:(\bar{A}, \bar{b})$ is a normal-form $L W E$ challenge

Further optimizations for LWE-based cryptography:

$$
\left(A, s^{\top} A+e^{\top}\right)
$$

$\tau$ typically a large matrix (e.g., $n \times m$ where $m \sim n \log$ q)
computing $S^{\top} A+e^{\top}$ requires $O(m n)$ time ( $m$ inner products)

Idea: Replace the ring $\mathbb{Z}$ with a different ring (algebraic structure that supports addition + multiplication) Specifically, we consider polynomial rings:
$\mathbb{Z}[x]$ : polynomials with integer coefficients in the variable $x$
$\mathbb{Z}[x] / f(x)$ : polynomials with integer coefficients modulo the polynomial $f(x)$
Ring-LWE: Common choice of ring: Power-of-two cyclotomic ring $\mathbb{Z}[x] /\left(x^{2^{2}}+1\right)$
General cyclotomic ring $\mathbb{Z}[x] / \Phi_{m}(x)$ where $\Phi_{m}$ denotes $m^{\text {th }}$ cyclotomic polynomial
equivalent formulation of ring LLE over ring $R=\mathbb{Z}[x] / f(x)$ :

advantages over LWE: more compact public parameters, faster computation
disadvantage: more structured assumption $\Rightarrow$ easier to break?
some rings are insecure but for the rings proposed for standardization, does not seem significantly less secure than LWE
Google pibted an experiment using RLWE-based key exchange in Chrome in 2016 (using a "best of both worlds" approach)

We can also view ring LWE as LWE with structured matrices
Example: $\mathbb{Z}[x] /\left(x^{2}+1\right)=\{a x+b: a, b \in \mathbb{Z}\} \cong \mathbb{Z}^{2}$
Every polynomial $f \in \mathbb{Z}[x] /\left(x^{2}+1\right)$ can be associated with a matrix $M_{f}$ that "represents" polynomial multiplication

$$
\text { L Suppose } \begin{aligned}
f(x)=a x+b \Rightarrow f(x) \cdot g(x) & =(a x+b)(c x+d) \\
g(x)=c x+d & =(a c) x^{2}+(a d+b c) x+(b d) \\
& =(a d+b c) x+(b d-a c) \quad \text { Since } x^{2}=-1\left(\bmod x^{2}+1\right)
\end{aligned}
$$

$$
\left[\begin{array}{cc}
b & a \\
-a & b
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
a d+b c \\
b d-a c
\end{array}\right]
$$

$\begin{array}{llll}\uparrow & \uparrow & \uparrow \\ M_{f} & g & f g & \longleftarrow\end{array} \quad \begin{aligned} & \text { Computing this matrix-vector product is } \\ & \\ & \text { to computing a product of polynomials }\end{aligned}$

- Advantage 1: polynomial multiplication can use EFT ( $n \log n$ for degree $n$ podyumalis)
- Advantage 2: matrix $M_{f}$ can be described by $n$ values rather than $n^{2}$ values

LWE is a versatile assumption: yields key exchange, pablic-key cryptography, signatures
also enables advanced primitives like

- fully homomorphic encryption: arbitrary computation on ciplertorts
- identity-bared encryption: pablic-key encryption scheme where puble keys can be arbitrary strings
- functional encryption: fine-grained control of data access
- and many more!
$\rightarrow$ also plausibly post-quantum resilient:

