

Observe : Above attack works for any deterministic encryption schame.
⇒ CPA-secure encryption must be <u>rendomized</u>!
⇒ To be reusable, cannot be deterministic. Encrypting the same message twice should not reveal that identical messages were encrypted.
To build a CPA-secure encryption scheme, we will use a "block cipher".
Block cipher is an <u>invertible</u> keyed function that takes a block of n input bits and produes a block of n output bits. Examples include 3DES (key size 168 bits, block size 64 bits).
Mill define block ciphers abstractly first: pseudorandom functions (PRFs) and pseudorandom pornutations (PRFs).
⇒ General idea: PRFs behave like render functions
Definition. A function F: K×X → Y with key space K, domain X, and range Y is a pseudorandom function (PRF) if for all efficient adversance A, | Wo-Wi |= negl., where Wb is the probability the adversary output: 2 in the following experiment:

adversery $\begin{array}{c|c} challenger \\ k \notin K; f(i) \leftarrow F(k, \cdot) \quad if b = 0 \\ f \notin Fins(X, Y] \quad if b = 1 \\ \hline \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} x \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible functions from X \rightarrow Y \\ \hline \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible function f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible function f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible function f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible function f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible function f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible function f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible function f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible function f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of all possible function f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x) \end{pmatrix} \qquad \begin{array}{c|c} the space of f(x) \\ f(x)$

PRFAdv[A, F] = | Wo - W1 = |Pr[A outputs 1 | b = 0] - Pr[A outputs 2 | b = 1]]

Intuitively: input-output behavior of a PRF is indistinguishable from that of a random function (to any computationally-bounded adversary) 3DES: {0,13¹⁶⁸ × {0,13⁴⁴ → {0,13⁶⁴ |K| = 2¹⁶⁸ |Funs[X,Y]} = (2⁶⁴) AES: {0,13²⁸ × {0,13²⁸ → {0,13²⁸ |K| = 2¹²⁸ |Funs[X,Y]} = (2²⁸)⁽²²⁸⁾ } space of random functions is exponentially-larger than key-space

Definition: A function F: K×X→X is a greatbrendom permutation (PRP) if - for all keys k, F(k, ·) is a permutation and moreover, there exists an efficient algorithm to compute F⁻¹(k, ·): V k E K : V X E X : F⁻¹(k, F(k, x)) = X - for k ^R K, the input-output behavior of F(k, ·) is computationally indistinguishable from f(·) where f ^R Perm [X] and Perm [X] is the set of all permutations on X (analogous to PRF security)

Note: a block cipher is another term for PRP (just like stream ciphers are PRGs)

Observe that a black optic on to used to construct a TRG:
F: (a)^A(b(a)^A
$$\rightarrow$$
 (c)^A to a black optic
Define $G: (a)^{A} \rightarrow (a)^{A}$ as
 $G(k) = F(k, |) |F(k, k) = |F(k, k)$ the share optic share optic share and a second $P(k)$
 $G(k) = F(k, |) |F(k, k)| = |F(k, k)$ the part of a some optic share optic share a second $P(k)$
 $G(k) = F(k, |) |F(k, k)| = |F(k, k)$ the part of a some optic share $P(k)$.
Define $G(k) = F(k, |) |F(k, k)| = |F(k, k)$ the part of a some optic share $P(k)$.
 $G(k) = F(k, |) |F(k, k)| = f(k)$ of the source $P(k)$.
 $G(k) = G(k) = G(k)$ the optic share $P(k)$.
 $P(k) = (k) : (k + k) = (k +$