Definition. A MAC TIMAC=(Sign, Verity) satisfies existential unforgeability against chosen message attacks (EUF-CMA) if for all efficient adversaries A, MACAdv[A, TIMAC]=Pr[W=1] = negl(2), where W is the output of the following security game:

adversary		challenger	As usual, I denotes the length of the MAC secret key
	men	k ^æ K	$(e.q., log k = poly(\lambda))$
	$t \leftarrow Sign(k,m) \overleftarrow{C}$		Note: the key can also be sangled by a special KeyGen
			algorithm (for simplicity, we just define it to be
			uniformly random)
(m*, t^)			

Let $m_1, ..., m_Q$ be the signing queries the adversary submits to the challenger, and let $t_i \in Sign(k, m_i)$ be the challenger's responses. Then, W = 1 if and only if:

MAC security notion says that adversary cannot produce a <u>new</u> tag on <u>any</u> message even if it gets to obtain tags on messages of its choosing.

First, we show that we can directly construct a MAC from any PRF.

 $\begin{array}{l} \underline{\mathsf{MACs} \ \mathsf{from} \ \mathsf{PRFs} \colon \mathsf{Let} \ \mathsf{F} \colon \mathsf{K}, \ltimes \mathsf{M} \to \mathsf{T} \ \mathsf{be} \ \mathsf{a} \ \mathsf{PRF}. \ \mathsf{We} \ \mathsf{construct} \ \mathsf{a} \ \mathsf{MAC} \ \mathsf{Timac} \ \mathsf{over} \ \left(\mathsf{K}, \mathsf{M}, \mathsf{T}\right) \ \mathsf{as} \ \mathsf{follows} \colon \\ \\ \\ \mathrm{Sign} \left(\mathsf{k}, \mathsf{m}\right) \colon \mathsf{Output} \ \mathsf{t} \ \leftarrow \mathsf{F}(\mathsf{k}, \mathsf{m}) \\ \\ \\ \mathrm{Venify} \left(\mathsf{k}, \mathsf{m}, \mathsf{t}\right) \colon \mathsf{Output} \ \mathsf{1} \ \mathsf{if} \ \mathsf{t} = \mathsf{F}(\mathsf{k}, \mathsf{m}) \ \mathsf{and} \ \mathsf{O} \ \mathsf{otherwise} \end{array}$

Theorem. If F is a secure PRF with a sufficiently large range, then TIMAC durined above is a secure MAC. Specifically, for every efficient MAC adversary A, there exists an efficient PRF adversary B such that MACAdu[A, TIMAC] < PRFAdu[B,F] + 171.

Intuition for proof: 1. Output of PRF is computationally indistinguishable from that of a truly random function. 2. It we replace the PRF with a truly random function, adversary wins the MAC game only if it correctly predicts the random function at a new point. Success probability is then exactly /17). Formalize using a "hybrid argument" [see Bonch-Shoup or ask in OH]

Implication: Any PRF with large output space can be used as a MAC. AES has 128-bit output space, so can be used as a MAC Drawback: Domain of AES is 128-bits, so can only sign 128-bit (16-byte) messages

How do we sign longer messages? We will look at two types of constructions: 1. Constructing a longe-domain PRF from a small-domain PRF (i.e., AES)

2. Hash-based constructions

Approach 1: use CBC (without IV)

Not encrypting messages so no need for IV (or intermediate blocks) -> Mode often called "raw-CBC"

Raw-CBC is a way to build a large-domain PRF from a small-domain one

> Can show security for "prefix-free" messages [more precisely, raw-CBC is a prefix-free PRF: pseudorandon as long sincludes fixed-length messages as a special case

But not secure for variable-length messages: "Extension attack"

1. Query for MAC on arbitrary block X:

 $\begin{array}{c|c} & \chi & \chi \oplus t \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$ $F(k, \cdot) \longrightarrow F(k, x)$

L> Adversary succeed with advantage I

2. Output forgery on message $(x, x \oplus t)$ and tog t \longrightarrow \Rightarrow t is a valid tag on <u>extended</u> <u>message</u> $(x, t \otimes x)$

row CBC can	be used	to build	a MAC	on fixed	l-length m	essages, bu	t nat vo	uriable-lev	gth mes	25402		
			(E	(mor CBC)	e generally, c ^{''} · :	prefix-free) Standards for	banking / f	inancia) ser	vices			
ror variadore len	Jin massing	50, 102 10	se ologi Ly	piece as					- 4	itical for	security	1
				VOSIONT	used in 1	WOL X44, H	NST XHI	STGACLOFOS	T I	LUSING TH	e same	lay not be
m.	m ₂	r	no		Ĺ	apply anoth	her PRF	with a <u>d</u>	itterent k	ey to the	e outp	nt of form
			Ê.									
$F(k_{i})$	$\left[F(k;) \right]$			$F(k_2, \cdot)$	- Pour	жст ,						
			<u> </u>									
To use encrypte	d CBC-MI	AC, we re	ed to as	sume m	essage len	oth is eve	in multiple	e of bloc	k size	(similar ·	to CBC	encryption
L> to sign	messages	that are	not a	multiple	of the	block size,	, we read	d to fi	rst pad	the me	songe	
لى مە ى	the case	with encryf	ption, pad	lding mus	t be injec	tive			T		0	
Lə	in the co	ise of ensu	rution ius	U Jectivity	weded to	r correction	239					
Lə	in #1	al inter		e eting			1:1	md(m) =	20.2 (m.)	Me and	m sill	have the
	in the cas	L 01 111120	34.42	Converge	accored the	Secury	Ľ	paul (110) -	free (in())	, 100 0000		The for
C 1				•		[Nico				1		
Standard approad	it to pad	l: append	1000	0 to 1	ill up block	LANDT	X9.9 and	ANSI X9	.19 Staado	rugis]		
Note: if	message is	5 an even	multiple	of the	block leng	th, need to	, introduc	z a dum	my block	<u>.</u>		
Lې	Necessary	for any in	ljective f	unction :	[{0,13"	> [{0,1}	<u>`</u>					
This is a	bit-padd	ling scheme	[PKCS	#7 that	we discuss	previously '	in the e	ontext of	CBC en	syption is	a byte	- padding s
		0								1		· · ·
Encounted CBC-M	AC drowb	acks: alway	a need	at kast	2 PRF e	valuations	(casing di	fferent ke	ys)] (especially	bad for	authentice
					13.3 +	his k ris	9			chart (en sinale	-hutte)
		messi	ages mus	t be po	dala 75	6100× 5,2e				SILDIET U	2.g., sr.gle	by ic mes
Better approach	: rew CB(C-MAC Seco	use for a	prefix-fre	: message:	, 						
L> Can we	cipply a	"prefix-fr	re" enco	ding to	the messo	ye!	equal - le	ength mess	uges can	not have	one be	prefix of
- 0	<u> tion 1: P</u>	repend the	message	e length	to the m	essage 🗲	different	r-length "	essages	differ in	first b	lock
	Problematic	. if we do	not know	s messa	e length i	st the be	ginning (e.g., in a	Streaming	setting)		
	Still require	es padding	message	to multi	ple of blor	k size)			0	0		
- 0	etion 2: A	Apply a re	andom se	cret shift	t to the	last black	of the	the SSG AF				
~		(~	γ.	~~) +	-> (~				- v			
			., ~2,	, ~() ·		×2,, ~2	JK/W	Nere K.				. 15
	H	tolversary t	that cloes	not kno	w k can	not constru	st two r	nessages	that an	e prefixe	s excep	t with
		pro bability	, ⁷ 1x1	(by gu	essing k)							
									> randomi	zed prefix	-free e	ncoding
Cipher-based	MAC (CA	MAC): va	vriant of	CBC-MA	C standar	dized by N	JIST in	2005	* clever -	technique	to avoid	l extra podd
,						1			better	than ence	worked CB	C (sharld
m,	[m ₂		me		secret ran	dom shift			Pro forme	d are a	II ate	بادحادا
		 } ;	-	k, E	(part of	the MAC ke	4) (h		freque		NUL SIG	(augus)
		, 	FU		_		\rightarrow	1.00.	here and	at to our	id collision	between un
$F(k_{i})$	<u> </u>	<u> </u>	+(k,.)	l orto	ut .		/	> outterent	verys need	message	and p	added mess
		_					المنطور	e of black	+-	2 endi	y in 100.	-0
m,		2	me 110-		le agell	the col (0	a mange	d your with	<u>_</u>		<u> </u>	
	-+) (^{mini} –	*	k2	d:fleme	the country li	(1954) 000 	~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~	neve	r needs t	o introd.	ue an
			- N		the second se							
↓ F(k,·)	F(k	~)~·	$F(k, \cdot)$	l→ oute	ant	- Seder k	ey K2		dddi	tional bloc	.k!	

Another approach based on a "cascade" design [Nested MAC (NMAC)] - Variant of this is HMAC (IETF standard - widely used MAC protocol on the web - will discuss later) $f = \begin{bmatrix} f & f \\ f & f \\ \hline f & f \\ \hline$ key for NMAC is (k, kz) PRF CBC-MAC, CMAC, and NMAC are PRF-based MACs (both approaches implicitly construct a variable-length PRF) - All are in fact streaming MACs (message blocks can be streamed - no need to know a priori bound) All constructions are <u>sequential</u> Theorem. Let F: K × X → X be a secure PRF. Let TIECEC be the encrypted CEC MAC formed by F and let TINMAC be the NMAC formed by F. Then, for all MAC adversaries A, there exists a PRF adversary B where] quadratic dependence on Q $MACAdv[A, \overline{\pi}_{ECSC}] \leq 2 \cdot PRFAdv[B,F] + \frac{Q^2(l+1)}{|\chi|}$ arises for similar reason as in analyzing CPA security (argue that all inputs to PRF) are unique $MACAdv[A, TIAMAC] \leq [Q(l+1) + 1] PRFAdv[B,F] + \frac{Q^2}{21K1}$ Proof. See Bonch-Shoup, Chapter 6. Implication: Block size of PRF is important! = 3DES: $|X| = 2^{124}$; need to update key after < 2^{32} signing queries = AES: $|X| = 2^{128}$; can use key to sign many more messages (~ 2^{64} messages) A parallelizable MAC (PMAC) - general idea: \int derived as $F(k_1, 0^n)$ — so key is just k_1 $P(k, \cdot)$ are important — otherwise, adversary can permute the blocks >"mask" term is of the form &: k where $F(k_{1,\cdot})$ $F(k_{1,\cdot})$ $F(k_{1,\cdot})$ multiplication is done over GF(2ⁿ) where n is $F(k_{i,j}) \rightarrow tag$ the block size (constants Vi carefully chosen for efficient evaluation) Can use similar ideas as CMAC (randomized prefix-free encoding) to support messages that is not constant multiple of block size Parallel structure of PMAC makes it easily updateable (assuming F is a PRP) PMAC is "incremental": → suppose we change block i from m[i] to m'[i]: compute $F^{-1}(k_1, tag) \oplus F(k_1, m[i] \oplus P(k, i)) \oplus F(k_1, m[i] \oplus P(k, i))$ can male local updates without full recomputation old value new value

In terms of performance:

- On sequential machine, PMAC comparable to ECBC, NMAC, CMAC] Best MAC we've seen so far, but not used... - On parallel machine, PMAC much better [not patented arymon!]

<u>Summary</u>: Many techniques to build a large-domain PRF from a small-domain one (domain extension for PRF) -> Each method (ECBC, NMAC, CMAC, PMAC) gives a MAC on <u>variable-length</u> messages have of these designs (or their variants) are standardized