
So far
,
we have focused on constructing a large- domain PRF from a small-domain PRF in order to construct a MAC

on long messages
↳ Alternative approach :

"

compress
"
the message itself (e.g,

"

hashi the message) and MAC the compressed representation

still require unforgeabiity : two messages should not hash to the same value [otherwise trivial attack : if Hlm ,) -- H (ma) , then

MAC on m , is also MAC on Mz)
↳
eitve : if hash value is shorter than messages, collisions alway exist - so we can only require that they are

hard to find

Definition
.
A hash function H ? M → T is collision - resistant if for efficient adversaries A

,

CRHFADVLA
,4) = Pr (Cmo , m .) ← A : H (mo) = Hlm .)) = negl .

As stated, definition is problematic : if IMI > ITI , then there always exists a collision mot
,
mi so consider the adversary

that has ME , mi hard coded and outputs ME , m't

↳
Thus, some adversary alway exists (even if we may not be able to write it down explicitly)

↳
Formally , we model the hash function as being parameterized by an additional parameter leg. , a " system parameter

"

or

a
"

key
") so adversary cannot output a hard- coded collision

↳
In practice , we have a concrete function leg., SHA -256) that does not include security or system parameters

↳ believed to be hard to find a collision even though there are infinitelyinany (SHA- 256 can take inputs
of arbitrary length)

MACf#lFs : suppose we have the following
- A MAC (sign , verify) with key- space K , message space Mo and tag space T leg, tmho

,
4%3*2
"

)
- A collision- resistant hash function H : M

,
→ Mo

Define S
'

(k , m) = S (K , H (m)) and

V'Ck
,
m
,
t) = VCK

,
Html

,
t)

theorem. Suppose TIMAC = (sign, Verify) is a secure MAC and H is a CRHF
.

Then
,
Trine is a secure MAC . Specifically,

for every efficient adversary A, there exist efficient adversaries Bio and B, such that

MACAdvCA
,
Trine] E MACAdr[Bo

,
IMac] t CRHFADVCB, ,H]

Profile Suppose A manages to produce a valid forgery t on a message m. Then
,
it must be the case that

- t is a valid MAC on H (m) under IMAC

- If A queries the signing oracle on m
'
t m where H (m ') = H (m)

,
then A breaks collision- resistance of H

- If A never queries signing oracle on m
'

where Hlm') -- H (m)
,
then it has never seen a MAC on Hlm) under

IMac. Thus
,
A breaks security of ITMAC .

[See Boneh-Shoup for formal argument - very
similar to above : just introduce event for collision occurring vs . not occurring]

Constructing above is simple and elegant , but not used in practice
-

Disadvantaged: Implementation requires both a secure MAC and a secure CRHF : more complex , need multiple software/hardware

implementations
-

Disadvantaged : CRHF is a keyless object and collision- finding is an offline attack (does not need to query verification oracle)

Adversary with substantial preprocessing power can compromise collision- resistance (especially if hash size is small)

Birthdayattacko-C.RS. Suppose we have a hash function H : {0,15 → {0,13L
.

How might we find a collision in H (without

knowing anything more about H)

Approached: Compute Htt) , Hk), . . . , H (Ll t D [size of hash output space
↳
By Pigeonhole Principle, there must be at least one collision - runs in time 0 (Ll)

Approached : Sample mi
E EQD

"

and compute H(mi) . Repeat until collision is found.

How many samples needed to find a collision?

T#BirhdayParadx) . Take
any
sets where 1st = n

. Suppose r. , ret s . Then,
ele-t)

Prftitj : ri -- r;] Z l - e
-

Tn

Pref. Prftitj : ri = rj]
= I - Pr [V-i±j : ritrj]
= I - PrLrz¢{r . 3) - PrEr, ¢ {runs] - - - - - Prfre Et {re.. ris)

n- I
= I - - . And

.njftln
= i - Ii'll

e
"

for xeeo.is. can now via a.io. expansion :*. . . .

¥
= I - e

Zn

number of people in a room

I to have a common birthday
when l71.242

,
Pr(collision] = Prftitj : ri -- rj] > I . (For birthdays , 1.21565 223]

↳ Birthdays not uniformly distributed , but this only increases collision probability .
[Try proving this

!]

For hash functions with range 90,13? we can use a birthday attack to find collisions in time tf = 2lb can even do it with

constant space !↳ For 128- bit security (e.g , 2128
)
, we

need the output to be 256- bits (hence SHALL)
Floyd 's cycle finding↳ Quantum collision - finding can be done in 243 (cube root attack)

, though requires more space ("" algorithm)

T HMAC (most widely used MAC)
So how do we use hash functions to obtain a secure MAC? Will revisit after studying constructions of CRHFS

.

Many cryptographic hash functions (e.g. , MDS, SHA- I , SHA
-256) follow the Merkle-Damgoard paradigm : start from hash function on short

messages and use it to build a collision- resistant hash function on a long message :

I. Split message into blocks

2. Iteratively apply compressional (hash function on short inputs) to message
blocks

1¥ . . . /¥_me h : compression function

to
, . .

- ite : chaining variables

.
→ output

padding introduced so last block is multiple of block

size

↳
must also include an encoding of the message

Hash functions are deterministic
,
so IV is a fixed string length : typically of the form 100 - - - O Hss)

(defined in the specification) - can be taken to be all - zeroes string , where (s> is a fixed-length binary representation
but usually set to a custom value in constructions of message length in blocks

Recall : 100 - - ' O padding was used in the

ANSI standard

if not enough space to include the length, then

for SHA-256 : extra block is added (similar to CBC encryption)
X = {0,13256 = y

Theorem. Suppose h : XXL→ X be a compression function. Let H : Y
th
→ X be the Merkle- Damaged hash function

constructed from h
.
Then

,
if his collision-- resistant

,
H is also collision- resistant.

Prot Suppose we have a collision- finding algorithm A for H. We use A to build a collision- finding algorithm for h :
l
. Run A to obtain a collision M and M

'

(HCM) = HEMI and MFM ')
.

2
.
Let M-

- m
, ma

- - - Mu and M
'
= mimi - - - mi be the blocks of M and M'

, respectively. Let to
, -4, tu and

title - - - ti be the corresponding chaining variables.
3
. Since HLM) = HIM')

,
it must be the case that

HIM) -- hHu- i
,
mu) = htt - i , mi) = HIM')

If either ta-i t ti-c or Mut mi
,
then we have a collision for h .

Otherwise
,
Mu = mi and tu-i -- ti-i . Since Mu and mi include an encoding of the length of M and M! it must

be the case that U -- V
.

Now
,
consider the second- to - last block in the construction (with output tu- I = the-i) :

tu-i = h (tu-z
,
Mu-c) = h(the

,
ma
'

. .) = tie ,
Either we have a collision or tu-z

-

- tu-z and Mu-i
= mi-i . Repeat down the chain until we have collision or

we have concluded that mi = mi
'

for all i
,
and so M-

- M
'

,
which is a contradiction

.

Note: Above constructing
is sequential . Easy to adapt construction (using a tree) to obtain a parallelizable construction .

Sufficient now to construct a compressionfunction_ .

Typical approach is to use a block cipher.

Davies-Meye.ro. Let F : Rx X→ X be a block cipher. The Davies - Meyer compression function h : Kt X→ X is then

Mi Ek

↳- h (k , x) : = FCK ,x) ① X
F)→f→ti EX Many other variants also possible : h (k, x) = FCK, x) ④ k ④ X-i
-

[used in whirlpool hash family]
Need to be careful with design !
-

h (k
,
x) = FCK , x) is not collision - resistant : h (k , X) : h (k

'

,
F-' (K' , FCK, xD)

- h (k ,x) = FCK. x) Ot k is not collision - resistant : h (k, x) = h (K
'

,
F
-' (k

'

,
FCK

,
x) to k Ot k'))

Then. If we model F as an ideal block cipher (ie
,
a truly random permutation for every choice of key), then Davies- Meyer is

collision- resistant.

(
birthday attack run-time :

n280
attack ran in time n 264 (100,000x

faster)
Conclusion : Block cipher t Davies- Meyer t Merkle-Damgoard ⇒ CRHFS January , 2020 : chosen- prefix

collision in -263.4 time !

Examples: SHA-1 : SHACAL- I block cipher with Davies- Meyer t Merkle
- Damgoard ← no longer secure [first collision found in 2017 !]

-

SHA -256 : SHACAL- 2 block cipher with Davies - Meyer
t Merkle- Damgaord -

SHA- I extensively used leg., git, son,
software updates, PGPIGPG signatures,

Why not use AES ? certificates)→ attacks show need

-

Block size too small ! AES outputs are 128- bits, not 256 bits (so birthday attack finds collision in 264 time) to transition to
SHA-2 or SHA-3

- Short keys means small number of message bits processed per iteration .
-

Typically, block cipher designed to be fast when using saree key to encrypt many messages
↳ In Merkle- Damgaord , different keys are used , so alternate design preferred (AES key schedule is expensive)

Recently : SHA- 3 family of hash functions standardized (2015)
↳ Relies on different underlying structure (" sponge

" function)
↳ Both SHA -2 and SHA-3 are believed to be secure (most systems use SHA -2 - typically much faster)

f or even better , a large -domain PRF
Back to building a secure MAC from a CRHF - can we do it more directly than using CRHF t small- domain MAC ?

↳ Main difficulty seems to be that CRHFS are keytess but MACS are keyed
Idea: include the key as part of the hashed input

By itself , collision - resistance does not provide any
"

randomness
"

guarantees on the output
↳ For instance , if H is collision- resistant

,
then H

'

(m) = Moll - - - Hm ,o H H (m) is also collision - resistant even though H
'
also

teaks the first 10 bits(blocks of m

↳ Constructing a PRFIMAC from a hash function will require more than just collision resistance

-

Options: Model hash function as an
" ideal hash function

"

that behaves like a fixed -rdyrandom✓ function

(modeling heuristic called the random oracle model)
-

Qptiod : start with a concrete construction of a CRHF (e.g. , Merkle
-Damgoard or the sponge construction)

and reason about its properties
↳ we will take this approach

