
Malicious prover can craft malformed proofs and see whether verifier accepts or not ⇒ Given verifier's challenge, poorer can
construct proofs of arbitrary statements

✓ but verifier cannot participate .- .

To get reusable soundness in the designated- verifier model
,
we need to re#h the challenge (different challenge for each statement)

Ike : replace PKE with ABE : different
"

randomness
"

can be used to check proofs of different statements

Let n be the length of the statement

Let F : K ✗ (G) ✗ {0,13")→ { 0,1} be a PRF ← will be used to derive challenge bit for statement ✗ (for each index 1
, . .. ,
7)

Let Ko # 1L
. Define the function

f-* (x , i , b) := {
0 if FCK

,
ii. ✗1) = b and i = it

1 otherwise

setup (H) : sample KEK and lmpk , msk)← ABE
. Setup (H)

sample ski ← ABE
. Keybencmski , f ;) for each i c- Et]

output pk= mpk
ski = (ski

,
. ..

,
sky

,

b)

Prove (pk, X , W) : construct first message 0, , . . . , Ox of ✗ copies of the 8- protocol
for each Oi , compute responses zi

" and Zi" to be the responses associated with challenge bit 0 and I

compute cti
"'
← ABE

. Encrypt Cmpk, tx, i.b), Zi
"'
)

output IT = (o,
,
. . .

,
ox , cti

"
,
ct
,

"'
,
. . .

,
ctii'

,
ctii')

Verify (Sk , ✗ , Ti) : evaluate bi ← FCK
,
(i.xD for each i C- A)

compute response Zibi) ← ABE. Decrypt (ski , et,
!b")

check that (Oi , bi , 2-Fbi)) is valid for each i c- Ex]

Completeness . By definition
,
fi (x

,
i
,
b) = 0 when b;= FCK

,
(i. xD so verifier is able to recover zilbi) for each i C- (a)

.

Completeness follows from completeness of the underlying HVZK .

ZeÉg: Follows by a similar argument as before
.

For all ij c- [H, f; (x,j , b) = 1 when b = I - FCK
,
ii.✗1)

↳
By ABE security, Ct.!

' -¥)
is computationally indistinguishable from encryption of all - zeroes string

Soundly : Ideally , want to argue
that K is hidden to adversary

⇒ uniform
, independent challenge b

, , . . . , by
£ { 0 , '} used to check

each statement ✗

↳ Verifier rejection attack no longer works : randomness associated with statement ✗ is independent of randomness

associated with statement ✗
*

Problem : Adversary gets to query the verification oracle which invokes ABE -Decrypt (ski , •) on an

adversariaHy-chonn_ ciphertext
↳ Output of decryption oracle could leak information about ski (which contains information about

the PRF key)

To address this
,
we need to make sure that oracle access to Decrypt (sky ,

•) does not leak information

about f other than whether decryption succeeded or not (i.e.
,
whether f- 1×7=0 or ftx) = 1)

Easy to achieve this property with lattice- based ABE scheme :

Recall structure of ABE ciphertext -

STA + error / We will also include ✗ as part of the ciphertextSTIB , - × , 61 - - - l Be - XEG] + error

stptpu.LI) + error

✗ [A 1 By] - Tf = G where 111711 is small

Let secret key for f be a trapdoor Tf for [A 1 Bf] where Bf = (B
, I - - - I Be] - Hf

To decrypt , we

(IIB,
- x.GL - - - l Be- Xe - G) terror)Hf,× = 5- (Bf - ft) - G)

= ST Bf when f- 1×1=0

Given sT[A / Bf] terror and Tf ,
Can solve LWE and recover the secret key s and the error

↳ Given s.pl , can recover the error from the ABE ciphertext

Decryption outputs message fu only if errors are sufficiently small (i.e. , such that decryption with skf always outputs µ)

keyobs-eruation.it errors small enough such that Decrypt (sky , Ct) → µ (regardless of which trapdoor we used) , then we can also

implement decryption using a trapdoor for A

Namely if A- TA = G and A is short
,
we can again recover the LWE secret s and the errors (and implement the same size

checks)

In other words : decryption introduces a ciphertext validity check with the guarantees
: Takeaway : Decrypt (sky , -)

1) If validity check passes , then decryption with sky can be simulated by decryption with Msk } hides information about f-

2) If validity check does not
pass ,

then decryption always outputs 1- other than value of flx)

Validity check passing / not passing depends only on ciphertext , not decryption key

with this
"

function- hiding
"

property, we can appeal to PRF security to argue
that independent randomness is used to check proofs of

each statement - can now reduce soundness to soundness of underlying 1- protocol

What about public verification ? Let's recall an approach in the random oracle model :

prover verifier

To obtain a NIZK in the ROM
,
we can derive

c ← Hfx
,
of where H is modeled as a random

.
oracle

Random oracle functions as verifier's randomness - challenge is determined only after prover has selected a commitment and is

unpredictable a priori

can we remove the random oracle ?

↳
Infraction: instantiate random oracle with a cryptographic hash function (e.g. , SHA -256)

does not admit a proof of security to a property like collision
.

- resistance

can we identify a sufficient condition for security?

