
CS 346: Introduction to Cryptography

Cryptographic De�nitions
Instructor: David Wu

In this note, we will recall the main de�nitions of the cryptographic notions encountered in this course.

1 Cryptographic Building Blocks
Pseudorandom generators (PRGs). Let� : {0, 1}_ → {0, 1}= be an e�ciently-computable function where = > _.
We de�ne the following PRG security experiments:

Experiment 1 = 0:
1. �e challenger samples B r← {0, 1}_ and sends C ← � (B) to A.
2. �e adversary A outputs a bit 1′ ∈ {0, 1}.

Experiment 1 = 1:
1. �e challenger samples C r← {0, 1}= and gives C to A.
2. �e adversary A outputs a bit 1′ ∈ {0, 1}.

We say � is a secure PRG if for all e�cient adversaries A,

PRGAdv[A] = |Pr[1 ′ = 1 | 1 = 0] − Pr[1 ′ = 1 | 1 = 1] | = negl(_).

Pseudorandom functions (PRFs). Let � : K ×X → Y be an e�ciently-computable function with a key space K ,
domain X, and range Y (technically, each of these sets is a function of the security parameter _). We now de�ne the
following PRF security experiments:

Experiment 1 = 0:
1. �e challenger samples : r← K .
2. �e adversary can now adaptively make queries to the challenger.

In each query, the adversary chooses an input G ∈ X, and the
challenger replies with � (:, G) .

3. �e adversary outputs a bit 1′ ∈ {0, 1}.

Experiment 1 = 1:
1. �e challenger samples a function 5 r← Funs[X,Y].
2. �e adversary can now adaptively make queries to the challenger.

In each query, the adversary chooses an input G ∈ X, and the
challenger replies with 5 (G) .

3. �e adversary outputs a bit 1′ ∈ {0, 1}.

We say that � is a secure PRF if for all e�cient adversaries A,

PRFAdv[A] = |Pr[1 ′ = 1 | 1 = 0] − Pr[1 ′ = 1 | 1 = 1] | = negl(_).

In the above de�nition, Funs[X,Y] denotes the set of all functions 5 : X → Y.

Pseudorandom permutations (PRPs). Let � : K × X → X be an e�ciently-computable function with a key
space K and domain X (technically, each of these sets is a function of the security parameter _). We say that � is a
pseudorandom permutation (PRP) if the following properties hold:

• For every key : ∈ K , the function � (:, ·) is a permutation on X.

• �ere exists an e�ciently-computable function �−1 : K × X → X such that for all : ∈ K and all G ∈ X,

�−1 (:, � (:, G)) = G .

For security, we de�ne the following PRP security experiments:

Experiment 1 = 0:
1. �e challenger samples : r← K .
2. �e adversary can now adaptively make queries to the challenger.

In each query, the adversary chooses an input G ∈ X, and the
challenger replies with � (:, G) .

3. �e adversary outputs a bit 1′ ∈ {0, 1}.

Experiment 1 = 1:
1. �e challenger samples a function 5 r← Perm[X].
2. �e adversary can now adaptively make queries to the challenger.

In each query, the adversary chooses an input G ∈ X, and the
challenger replies with 5 (G) .

3. �e adversary outputs a bit 1′ ∈ {0, 1}.

1

We say that � is a secure PRP if for all e�cient adversaries A,

PRPAdv[A] = |Pr[1 ′ = 1 | 1 = 0] − Pr[1 ′ = 1 | 1 = 1] | = negl(_).

In the above de�nition, Perm[X] denotes the set of all permutations 5 : X → X.

Collision-resistant hash functions (CRHFs). Let � : {0, 1}= → {0, 1}< where < < = (for full formality, the
hash function would be indexed by a security parameter _ and =,< are polynomials in _). We say that � is a
collision-resistant hash function if for all e�cient (uniform) adversaries A (that takes the security parameter _ as
input),

CRHFAdv[A] = Pr[(G,~) ← A : � (G) = � (~) and G ≠ ~] = negl(_).

2 Symmetric Encryption
A symmetric encryption scheme (also called a cipher) is de�ned over a key space K , a message spaceM, and a
ciphertext space C (technically, each of these sets is a function of the security parameter _) and consists of two
e�cient algorithms:

• Encrypt(:,<) → ct: On input a key : ∈ K and a message < ∈ M, the encryption algorithm outputs a
ciphertext ct.

• Decrypt(:, ct) →</⊥: On input a key : ∈ K and a ciphertext ct ∈ C, the decryption algorithm either outputs
a message< ∈ M or a special symbol ⊥ (to indicate a decryption failure).

Correctness. �e encryption scheme is correct if for all keys : ∈ K and all messages< ∈ M,

Pr[Decrypt(:, Encrypt(:,<)) =<] = 1.

Perfect secrecy. �e encryption scheme satis�es perfect secrecy if for all pairs of messages<0,<1 ∈ M and all
ciphertext ct ∈ C,

Pr[: r← K : Encrypt(:,<0) = 2] = Pr[: r← K : Encrypt(:,<1) = 2] .

Semantic security. We start by de�ning the semantic security experiment:
Experiment 1 = 0:
1. �e challenger samples a key : r← K .
2. �e adversary A sends messages<0,<1 ∈ M to the challenger.
3. �e challenger replies with Encrypt(:,<0) .
4. �e adversary A outputs a bit 1′ ∈ {0, 1}.

Experiment 1 = 1:
1. �e challenger samples a key : r← K .
2. �e adversary A sends messages<0,<1 ∈ M to the challenger.
3. �e challenger replies with Encrypt(:,<1) .
4. �e adversary A outputs a bit 1′ ∈ {0, 1}.

We say the encryption scheme satis�es semantic security if for all e�cient adversaries A,

SSAdv[A] = |Pr[1 ′ = 1 | 1 = 0] − Pr[1 ′ = 1 | 1 = 1] | = negl(_).

Note that when the message spaceM contains variable-length messages, then each of the adversary’s encryption
queries (<0,<1) in the semantic security experiment must additionally satisfy |<0 | = |<1 |.

Security against chosen-plaintext attacks (CPA-security). We start by de�ning the CPA-security experiment:
Experiment 1 = 0:
• �e challenger samples a key : r← K .
• �e adversary can now make queries to the challenger:
– Encryption query: �e adversary sends<0,<1 ∈ M to the

challenger. �e challenger replies with Encrypt(:,<0) .
• �e adversary A outputs a bit 1′ ∈ {0, 1}.

Experiment 1 = 1:
• �e challenger samples a key : r← K .
• �e adversary can now make queries to the challenger:
– Encryption query: �e adversary sends<0,<1 ∈ M to the

challenger. �e challenger replies with Encrypt(:,<1) .
• �e adversary A outputs a bit 1′ ∈ {0, 1}.

2

We say the encryption scheme satis�es security against chosen-plaintext a�acks (CPA-security) if for all e�cient
adversaries A,

CPAAdv[A] = |Pr[1 ′ = 1 | 1 = 0] − Pr[1 ′ = 1 | 1 = 1] | = negl(_).

Note that when the message spaceM contains variable-length messages, then each of the adversary’s encryption
queries (<0,<1) in the CPA-security experiment must additionally satisfy |<0 | = |<1 |.

Security against chosen-ciphertext attacks (CCA-security). We start by de�ning the CCA-security experiment:

Experiment 1 = 0:
• �e challenger samples a key : r← K .
• �e adversary can now make queries to the challenger:
– Encryption query: �e adversary sends<0,<1 ∈ M to the

challenger. �e challenger replies with Encrypt(:,<0) .
– Decryption query: �e adversary sends a ciphertext ct ∈ C to

the challenger. �e challenger replies with Decrypt(:, ct) .
• �e adversary A outputs a bit 1′ ∈ {0, 1}.

Experiment 1 = 1:
• �e challenger samples a key : r← K .
• �e adversary can now make queries to the challenger:
– Encryption query: �e adversary sends<0,<1 ∈ M to the

challenger. �e challenger replies with Encrypt(:,<1) .
– Decryption query: �e adversary sends a ciphertext ct ∈ C to

the challenger. �e challenger replies with Decrypt(:, ct) .
• �e adversary A outputs a bit 1′ ∈ {0, 1}.

We say an adversaryA is admissible for the CCA-security game if it does not issue a decryption query on a ciphertext
ct it previously received from the challenger (in response to an encryption query). We say the encryption scheme
satis�es security against chosen-ciphertext a�acks (CCA-security) if for all e�cient and admissible adversaries A,

CCAAdv[A] = |Pr[1 ′ = 1 | 1 = 0] − Pr[1 ′ = 1 | 1 = 1] | = negl(_).

Note that when the message spaceM contains variable-length messages, then each of the adversary’s encryption
queries (<0,<1) in the CCA-security experiment must additionally satisfy |<0 | = |<1 |.

Ciphertext integrity. We start by de�ning the ciphertext integrity experiment:

Ciphertext integrity experiment:
• �e challenger samples a key : r← K .
• �e adversary can now make encryption queries to the challenger:
– Encryption query: �e adversary sends< ∈ M to the challenger. �e challenger replies with ct← Encrypt(:,<) .

• �e adversary A outputs a ciphertext ct∗ ∈ C.

Let ct1, . . . , ct& ∈ C be the ciphertexts that the challenger gives the adversary in the security game (when responding to
encryption queries). We say an adversaryA is admissible for the existential unforgeability game if ct∗ ∉

{
ct1, . . . , ct&

}
.

We say that the encryption scheme satis�es ciphertext integrity if for all e�cient and admissible adversaries A,

Pr[Decrypt(:, ct∗) ≠ ⊥] = negl(_).

Authenticated encryption. We say the encryption scheme is an authenticated encryption if it satis�es CPA-
security and ciphertext integrity.

3 Message Authentication Codes
A message authentication code (MAC) is de�ned over a key space K , a message space M, and a tag space T
(technically, each of these sets is a function of the security parameter _) and consists of two e�cient algorithms:

• Sign(:,<) → C : On input a key : ∈ K and a message< ∈ M, the signing algorithm outputs a tag C .

• Verify(:,<, C) → 0/1: On input a key : ∈ K , a message< ∈ M, and a tag C ∈ T , the veri�cation algorithm
outputs a bit 1 ∈ {0, 1} (indicating whether the tag is valid or not).

3

Correctness. �e MAC is correct if for all keys : ∈ K and all messages< ∈ M,

Pr[Verify(:,<, Sign(:,<)) = 1] = 1.

Existential unforgeability. We start by de�ning the existential unforgeability experiment:

Existential unforgeability experiment:
• �e challenger samples a key : r← K .
• �e adversary can now make signing queries to the challenger:
– Signing query: �e adversary sends< ∈ M to the challenger. �e challenger replies with C ← Sign(:,<) .

• �e adversary A outputs a message<∗ ∈ M and tag C∗ ∈ T.

Let <1, . . . ,<& ∈ M be the signing queries the adversary makes and let C1, . . . , C& ∈ T be the respective tags
that the challenger responds with. We say an adversary A is admissible for the existential unforgeability game
if (<∗, C∗) ∉

{
(<1, C1), . . . , (<& , C&)

}
. We say the MAC satis�es existential unforgeability against chosen-message

a�acks if for all e�cient and admissible adversaries A,

Pr[Verify(:,<∗, C∗) = 1] = negl(_).

4 Block Cipher Modes of Operation
We now recall two common ways to use block ciphers to construct CPA-secure encryption schemes.

Countermode. Let � : K×{0, 1}= → {0, 1}= be a secure PRF. In the following,: is the PRF key and< = (<1, . . . ,<=)
are the blocks of the message (i.e.,<8 ∈ {0, 1}=). In randomized counter-mode encryption, sample IV r← {0, 1}= , and
the ciphertext is (IV, 21, . . . , 2=). We view IV as an integer between 0 and 2= − 1, and perform arithmetic operations
modulo 2= .

� (:, ·)

21

<1

� (:, ·)

22

<2

� (:, ·)

23

<3

IV IV + 1 IV + 2

· · · · · · · · · · · · � (:, ·)

IV + = − 1

2=

<=

Figure 1: Counter-mode encryption

4

� (:, ·)

<1

21

� (:, ·)

<2

22

� (:, ·)

<3

23

IV IV + 1 IV + 2

· · · · · · · · · · · · � (:, ·)

IV + = − 1

<=

2=

Figure 2: Counter-mode decryption

Cipherblock chaining (CBC). Let � : K × {0, 1}= → {0, 1}= be a block cipher (i.e., a secure PRP). In the following,
: is the PRP key and< = (<1, . . . ,<=) are the blocks of the message (i.e.,<8 ∈ {0, 1}=). In CBC encryption, sample
IV r← {0, 1}= , and the ciphertext is (IV, 21, . . . , 2=).

� (:, ·)

<1

21

� (:, ·)

<2

22

� (:, ·)

<3

23

IV
21 22

· · · · · · � (:, ·)

<=

2=

2=−1

Figure 3: CBC encryption

�−1 (:, ·)

<1

21

�−1 (:, ·)

<2

22

�−1 (:, ·)

<3

23

IV
21 22

· · · · · · �−1 (:, ·)

<=

2=−1

2=

Figure 4: CBC decryption

5 Public-Key Encryption
A public-key encryption scheme is de�ne with respect to a message spaceM and a ciphertext space C (technically,
each of these sets can be a function of the security parameter _) and consists of three algorithms:

5

• Setup→ (pk, sk): �e setup algorithm outputs a public key pk and a secret key sk. (Technically, this algorithm
takes the security parameter _ as input).

• Encrypt(pk,<) → ct: On input the public key pk and a message< ∈ M, the encryption algorithm outputs a
ciphertext ct.

• Decrypt(sk, ct) →<: On input a secret key sk and a ciphertext ct, the decryption algorithm either outputs a
message< ∈ M or a special symbol ⊥ (to indicate a decryption failure).

Correctness. A public-key encryption scheme is correct if for all (pk, sk) output by Setup and all messages< ∈ M,

Pr[Decrypt(sk, Encrypt(pk,<)) =<] = 1.

Semantic security. �e semantic security experiment is de�ned analogously to the corresponding notion in the
secret-key se�ing:

Experiment 1 = 0:
1. �e challenger samples (pk, sk) ← Setup and gives pk to A.
2. �e adversary A sends messages<0,<1 ∈ M to the challenger.
3. �e challenger replies with Encrypt(pk,<0) .
4. �e adversary A outputs a bit 1′ ∈ {0, 1}.

Experiment 1 = 1:
1. �e challenger samples (pk, sk) ← Setup and gives pk to A.
2. �e adversary A sends messages<0,<1 ∈ M to the challenger.
3. �e challenger replies with Encrypt(pk,<1) .
4. �e adversary A outputs a bit 1′ ∈ {0, 1}.

We say the encryption scheme satis�es semantic security if for all e�cient adversaries A,

SSAdv[A] = |Pr[1 ′ = 1 | 1 = 0] − Pr[1 ′ = 1 | 1 = 1] | = negl(_).

CCA security. We start by de�ning the CCA-security experiment for public-key encryption. �is is the analog of
the corresponding secret-key notion.

Experiment 1 = 0:
• �e challenger samples (pk, sk) ← Setup and gives pk to A.
• �e adversary can now issue decryption queries to the challenger:
– Decryption query: �e adversary sends a ciphertext ct ∈ C to

the challenger. �e challenger replies with Decrypt(sk, ct) .
• �e adversary A sends messages<0,<1 ∈ M to the challenger.
• �e challenger replies with ct∗ ← Encrypt(pk,<0) .
• �e adversary can make more decryption queries to the challenger,
with the restriction that it is not allowed to query on ct∗.
– Decryption query: �e adversary sends a ciphertext ct ≠ ct∗ to

the challenger. �e challenger replies with Decrypt(sk, ct) .
• �e adversary A outputs a bit 1′ ∈ {0, 1}.

Experiment 1 = 1:
• �e challenger samples (pk, sk) ← Setup and gives pk to A.
• �e adversary can now issue decryption queries to the challenger:
– Decryption query: �e adversary sends a ciphertext ct ∈ C to

the challenger. �e challenger replies with Decrypt(sk, ct) .
• �e adversary A sends messages<0,<1 ∈ M to the challenger.
• �e challenger replies with ct∗ ← Encrypt(pk,<1) .
• �e adversary can make more decryption queries to the challenger,
with the restriction that it is not allowed to query on ct∗.
– Decryption query: �e adversary sends a ciphertext ct ≠ ct∗ to

the challenger. �e challenger replies with Decrypt(sk, ct) .
• �e adversary A outputs a bit 1′ ∈ {0, 1}.

We say the encryption scheme satis�es security against chosen-ciphertext a�acks (CCA-security) if for all e�cient
adversaries A,

CCAAdv[A] = |Pr[1 ′ = 1 | 1 = 0] − Pr[1 ′ = 1 | 1 = 1] | = negl(_).

6 Digital Signatures
A digital signature scheme is de�ned over a message spaceM and a signature space S (technically, each of these sets
can be a function of the security parameter _) and consists of three main algorithms:

• Setup → (vk, sk): �e setup algorithm outputs a public veri�cation key vk and a secret signing key sk.
(Technically, this algorithm takes the security parameter _ as input).

• Sign(sk,<) → f : On input the signing key sk and a message< ∈ M, the signing algorithm outputs a signature
f ∈ S.

6

• Verify(vk,<, ct) → {0, 1}: On input the veri�cation key vk, a message< ∈ M, and a signature f ∈ S, the
veri�cation algorithm outputs a bit 1 ∈ {0, 1} (indicating whether the signature is valid or not).

Correctness. �e signature scheme is correct if for all (vk, sk) output by Setup and all messages< ∈ M,

Pr[Verify(vk,<, Sign(sk,<)) = 1] = 1.

Unforgeability. We start by de�ning the unforgeability experiment:

Existential unforgeability experiment:
• �e challenger samples (vk, sk) ← Setup and gives vk to the adversary.
• �e adversary can now make signing queries to the challenger:
– Signing query: �e adversary sends< ∈ M to the challenger. �e challenger replies with f ← Sign(sk,<) .

• �e adversary A outputs a message<∗ ∈ M and signature f∗ ∈ S.

We say an adversary A is admissible for the signature unforgeability game if the adversary does not make a signing
query on the message<∗. We say the signature scheme satis�es unforgeability if for all e�cient and admissible
adversaries A,

Pr[Verify(sk,<∗, f∗) = 1] = negl(_).

7

	Cryptographic Building Blocks
	Symmetric Encryption
	Message Authentication Codes
	Block Cipher Modes of Operation
	Public-Key Encryption
	Digital Signatures

