CS 346: Introduction to Cryptography

Cryptographic Definitions

Instructor: David Wu

In this note, we will recall the main definitions of the cryptographic notions encountered in this course.

1 Cryptographic Building Blocks

Pseudorandom generators (PRGs). Let G: {0,1}* — {0, 1}" be an efficiently-computable function where n > A.
We define the following PRG security experiments:

Experiment b = 0: Experiment b = 1:
1. The challenger samples s & {0, 1} and sends t « G(s) to A. 1. The challenger samples ¢ < {0,1}" and gives ¢ to A.
2. The adversary A outputs a bit " € {0,1}. 2. The adversary A outputs a bit ¥’ € {0,1}.

We say G is a secure PRG if for all efficient adversaries A,

PRGAdV[A] = [Pr[b’ =1|b=0] - Pr[b’ = 1| b =1]| = negl(}).

Pseudorandom functions (PRFs). Let F: K x X — Y be an efficiently-computable function with a key space %K,
domain X, and range Y (technically, each of these sets is a function of the security parameter 1). We now define the
following PRF security experiments:

Experiment b = 0: Experiment b = 1:

1. The challenger samples k & K. 1. The challenger samples a function f & Funs[X, Y].

2. The adversary can now adaptively make queries to the challenger.|| 2. The adversary can now adaptively make queries to the challenger.
In each query, the adversary chooses an input x € X, and the In each query, the adversary chooses an input x € X, and the
challenger replies with F(k, x). challenger replies with f(x).

3. The adversary outputs a bit b’ € {0,1}. 3. The adversary outputs a bit b’ € {0,1}.

We say that F is a secure PRF if for all efficient adversaries A,
PRFAdv[A] = |Pr[b'=1|b=0] —Pr[b' =1| b =1]| = negl().

In the above definition, Funs[X, Y] denotes the set of all functions f: X — Y.

Pseudorandom permutations (PRPs). Let F: K X X — X be an efficiently-computable function with a key
space K and domain X (technically, each of these sets is a function of the security parameter 1). We say that F is a
pseudorandom permutation (PRP) if the following properties hold:

« For every key k € K, the function F(k, -) is a permutation on X.

« There exists an efficiently-computable function F~!: K x X — X such that for all k € K and all x € X,

Fl(k F(k,x)) = x.

For security, we define the following PRP security experiments:

Experiment b = 0: Experiment b = 1:

1. The challenger samples k & K. 1. The challenger samples a function f & Perm[X].

2. The adversary can now adaptively make queries to the challenger.|| 2. The adversary can now adaptively make queries to the challenger.
In each query, the adversary chooses an input x € X, and the In each query, the adversary chooses an input x € X, and the
challenger replies with F(k, x). challenger replies with f(x).

3. The adversary outputs a bit b’ € {0,1}. 3. The adversary outputs a bit b’ € {0, 1}.

We say that F is a secure PRP if for all efficient adversaries A,

PRPAdV[A] = |Pr[b'=1|b=0] —Pr[b’ =1| b =1]| = negl(A).
In the above definition, Perm[X] denotes the set of all permutations f: X — X.
Collision-resistant hash functions (CRHFs). Let H: {0,1}" — {0,1}™ where m < n (for full formality, the
hash function would be indexed by a security parameter A and n, m are polynomials in). We say that H is a
collision-resistant hash function if for all efficient (uniform) adversaries A (that takes the security parameter A as

input),
CRHFAdv[A] =Pr[(x,y) « A : H(x) = H(y) and x # y] = negl(1).

2 Symmetric Encryption

A symmetric encryption scheme (also called a cipher) is defined over a key space K, a message space M, and a
ciphertext space C (technically, each of these sets is a function of the security parameter 1) and consists of two
efficient algorithms:

+ Encrypt(k,m) — ct: On input a key k € K and a message m € M, the encryption algorithm outputs a
ciphertext ct.

« Decrypt(k,ct) — m/L: On input a key k € K and a ciphertext ct € C, the decryption algorithm either outputs
a message m € M or a special symbol L (to indicate a decryption failure).

Correctness. The encryption scheme is correct if for all keys k € K and all messages m € M,

Pr[Decrypt(k, Encrypt(k,m)) = m] = 1.

Perfect secrecy. The encryption scheme satisfies perfect secrecy if for all pairs of messages mg, m; € M and all
ciphertext ct € C,
Pr[k & K : Encrypt(k,my) = c] = Pr[k & K : Encrypt(k, m;) = c].

Semantic security. We start by defining the semantic security experiment:

Experiment b = 0: Experiment b = 1:

1. The challenger samples a key k & K. 1. The challenger samples a key k < K.

2. The adversary A sends messages mo, m; € M to the challenger. || 2. The adversary A sends messages mg, m; € M to the challenger.
3. The challenger replies with Encrypt(k, my). 3. The challenger replies with Encrypt(k, my).

4. The adversary A outputs a bit b’ € {0,1}. 4. The adversary A outputs a bit ' € {0,1}.

We say the encryption scheme satisfies semantic security if for all efficient adversaries A,
SSAdv[A] = |Pr[b’ =1|b=0] —Pr[b' =1]|b=1]| = negl(A).

Note that when the message space M contains variable-length messages, then each of the adversary’s encryption
queries (my, m;) in the semantic security experiment must additionally satisfy |mg| = |my].

Security against chosen-plaintext attacks (CPA-security). We start by defining the CPA-security experiment:

Experiment b = 0: Experiment b = 1:
« The challenger samples a key k & %. « The challenger samples a key k & K.
« The adversary can now make queries to the challenger: « The adversary can now make queries to the challenger:
- Encryption query: The adversary sends mg, m; € M to the - Encryption query: The adversary sends mo,m; € M to the
challenger. The challenger replies with Encrypt(k, my). challenger. The challenger replies with Encrypt(k, mp).
« The adversary A outputs a bit b € {0,1}. « The adversary A outputs a bit " € {0,1}.

We say the encryption scheme satisfies security against chosen-plaintext attacks (CPA-security) if for all efficient
adversaries A,
CPAAdv[A] = Pr[b’ =1|b=0] —Pr[b’ =1]| b =1]| = negl(A).

Note that when the message space M contains variable-length messages, then each of the adversary’s encryption
queries (mg, m;) in the CPA-security experiment must additionally satisfy |mg| = |m;].

Security against chosen-ciphertext attacks (CCA-security). We start by defining the CCA-security experiment:

Experiment b = 0: Experiment b = 1:
« The challenger samples a key k & %. « The challenger samples a key k & K.
« The adversary can now make queries to the challenger: « The adversary can now make queries to the challenger:
- Encryption query: The adversary sends mg, m; € M to the - Encryption query: The adversary sends my,m; € M to the
challenger. The challenger replies with Encrypt(k, my). challenger. The challenger replies with Encrypt(k, mp).
- Decryption query: The adversary sends a ciphertext ct € C to - Decryption query: The adversary sends a ciphertext ct € C to
the challenger. The challenger replies with Decrypt(k, ct). the challenger. The challenger replies with Decrypt(k, ct).
+ The adversary A outputs a bit b € {0,1}. « The adversary A outputs a bit " € {0,1}.

We say an adversary A is admissible for the CCA-security game if it does not issue a decryption query on a ciphertext
ct it previously received from the challenger (in response to an encryption query). We say the encryption scheme
satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient and admissible adversaries A,

CCAAdV[A] = |Pr[b’ =1 | b =0] - Pr[p’ = 1| b = 1]| = negl(A).

Note that when the message space M contains variable-length messages, then each of the adversary’s encryption
queries (mg, m;) in the CCA-security experiment must additionally satisfy |mg| = |m;].

Ciphertext integrity. We start by defining the ciphertext integrity experiment:

Ciphertext integrity experiment:

« The challenger samples a key k & K.
« The adversary can now make encryption queries to the challenger:

- Encryption query: The adversary sends m € M to the challenger. The challenger replies with ct « Encrypt(k, m).

« The adversary A outputs a ciphertext ct* € C.

Letcty,...,ctp € C be the ciphertexts that the challenger gives the adversary in the security game (when responding to
encryption queries). We say an adversary (A is admissible for the existential unforgeability game if ct* ¢ {ctl, cees ctQ}.
We say that the encryption scheme satisfies ciphertext integrity if for all efficient and admissible adversaries A,

Pr[Decrypt(k,ct*) # L] = negl(1).

Authenticated encryption. We say the encryption scheme is an authenticated encryption if it satisfies CPA-
security and ciphertext integrity.

3 Message Authentication Codes

A message authentication code (MAC) is defined over a key space K, a message space M, and a tag space 7~
(technically, each of these sets is a function of the security parameter 1) and consists of two efficient algorithms:

« Sign(k,m) — t: On input a key k € K and a message m € M, the signing algorithm outputs a tag t.

« Verify(k,m,t) — 0/1: On input a key k € K, a message m € M, and a tag t € 7, the verification algorithm
outputs a bit b € {0, 1} (indicating whether the tag is valid or not).

Correctness. The MAC is correct if for all keys k € K and all messages m € M,

Pr[Verify(k, m, Sign(k, m)) = 1] = 1.

Existential unforgeability. We start by defining the existential unforgeability experiment:

Existential unforgeability experiment:

« The challenger samples a key k < K.
« The adversary can now make signing queries to the challenger:

- Signing query: The adversary sends m € M to the challenger. The challenger replies with ¢ « Sign(k, m).

+ The adversary A outputs a message m* € M and tag t* € 7.

Let my,...,mp € M be the signing queries the adversary makes and let t;,...,tp € 7 be the respective tags
that the challenger responds with. We say an adversary A is admissible for the existential unforgeability game
if (m*,t%) ¢ {(ml, t1), ..., (mo, tQ)}. We say the MAC satisfies existential unforgeability against chosen-message
attacks if for all efficient and admissible adversaries ‘A,

Pr[Verify(k, m*, t*) = 1] = negl(]).

4 Block Cipher Modes of Operation

We now recall two common ways to use block ciphers to construct CPA-secure encryption schemes.

Counter mode. Let F: Kx{0,1}" — {0, 1}" be a secure PRF. In the following, k is the PRFkey and m = (my, ..., my)
are the blocks of the message (i.e., m; € {0,1}"). In randomized counter-mode encryption, sample IV < {0,1}", and
the ciphertext is (1V,c1, ..., c,). We view |V as an integer between 0 and 2" — 1, and perform arithmetic operations
modulo 2".

v IV+1 IV +2 IV+n-1

l l
F(k’) F(k’) F(k,) F(k’)

p—s my —(My —p

Y Y Y
C1 Co C3 Cn

U~

mq —»E

Figure 1: Counter-mode encryption

IV+1 IV +2 IV+n-1

v
F(k,-) F(k,-) Fk,-) | ceeveeeeeees F(k,-)

G oD en —D

Y A, A,
my m; ms mp

Figure 2: Counter-mode decryption

Cipherblock chaining (CBC). Let F: K x{0,1}" — {0,1}" be a block cipher (i.e., a secure PRP). In the following,
k is the PRP key and m = (my, ..., m,) are the blocks of the message (i.e., m; € {0,1}"). In CBC encryption, sample
IV & {0,1}", and the ciphertext is (1V,cy, ..., ¢cn).

my my ms my
Y cl Y c2 Y cn—l Y
vV —— D D ~D
A A Y Y
F(k,) F(k,-) F(k,-) | - F(k,-)
A A
C1 C2 C3 Cn

Figure 3: CBC encryption

C1 C2 C3 Cn
| l
F—l (k,) F—l (k,) F_l(k,) F_l(k,)
C1 4 C2 Y Ch-1]
IV ——P D D ~D
Y Y A,
my ms ms mp

Figure 4: CBC decryption

5 Public-Key Encryption

A public-key encryption scheme is define with respect to a message space M and a ciphertext space C (technically,
each of these sets can be a function of the security parameter 1) and consists of three algorithms:

« Setup — (pk, sk): The setup algorithm outputs a public key pk and a secret key sk. (Technically, this algorithm
takes the security parameter A as input).

« Encrypt(pk, m) — ct: On input the public key pk and a message m € M, the encryption algorithm outputs a
ciphertext ct.

« Decrypt(sk,ct) — m: On input a secret key sk and a ciphertext ct, the decryption algorithm either outputs a
message m € M or a special symbol L (to indicate a decryption failure).

Correctness. A public-key encryption scheme is correct if for all (pk, sk) output by Setup and all messages m € M,

Pr[Decrypt(sk, Encrypt(pk,m)) = m] = 1.

Semantic security. The semantic security experiment is defined analogously to the corresponding notion in the
secret-key setting:

Experiment b = 0: Experiment b = 1:

1. The challenger samples (pk, sk) « Setup and gives pk to A. 1. The challenger samples (pk, sk) « Setup and gives pk to A.

2. The adversary A sends messages mg, m; € M to the challenger. || 2. The adversary A sends messages mo, m; € M to the challenger.
3. The challenger replies with Encrypt(pk, my). 3. The challenger replies with Encrypt(pk, my).

4. The adversary A outputs a bit b’ € {0,1}. 4. The adversary A outputs a bit b" € {0,1}.

We say the encryption scheme satisfies semantic security if for all efficient adversaries A,

SSAdV[A] = |Pr[b'=1|b=0] —=Pr[b' =1|b =1]| = negl(}).

CCA security. We start by defining the CCA-security experiment for public-key encryption. This is the analog of
the corresponding secret-key notion.

Experiment b = 0: Experiment b = 1:
« The challenger samples (pk, sk) « Setup and gives pk to A. « The challenger samples (pk, sk) « Setup and gives pk to A.
+ The adversary can now issue decryption queries to the challenger: ||« The adversary can now issue decryption queries to the challenger:
- Decryption query: The adversary sends a ciphertext ct € C to - Decryption query: The adversary sends a ciphertext ct € C to
the challenger. The challenger replies with Decrypt(sk, ct). the challenger. The challenger replies with Decrypt(sk, ct).
+ The adversary A sends messages mg, m; € M to the challenger. + The adversary A sends messages mg, m; € M to the challenger.
« The challenger replies with ct* < Encrypt(pk, myo). « The challenger replies with ct* « Encrypt(pk, my).
« The adversary can make more decryption queries to the challenger, || «+ The adversary can make more decryption queries to the challenger,
with the restriction that it is not allowed to query on ct*. with the restriction that it is not allowed to query on ct*.
— Decryption query: The adversary sends a ciphertext ct # ct* to - Decryption query: The adversary sends a ciphertext ct # ct* to
the challenger. The challenger replies with Decrypt(sk, ct). the challenger. The challenger replies with Decrypt(sk, ct).
« The adversary A outputs a bit b’ € {0, 1}. « The adversary A outputs a bit b’ € {0,1}.

We say the encryption scheme satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient
adversaries A,
CCAAdv[A] =|Pr[b’ =1|b=0] —Pr[b' =1]| b =1]| = negl(A).

6 Digital Signatures

A digital signature scheme is defined over a message space M and a signature space S (technically, each of these sets
can be a function of the security parameter 1) and consists of three main algorithms:

« Setup — (vk,sk): The setup algorithm outputs a public verification key vk and a secret signing key sk.
(Technically, this algorithm takes the security parameter A as input).

« Sign(sk,m) — o: On input the signing key sk and a message m € M, the signing algorithm outputs a signature

c€eS.

« Verify(vk,m,ct) — {0, 1}: On input the verification key vk, a message m € M, and a signature o € S, the
verification algorithm outputs a bit b € {0, 1} (indicating whether the signature is valid or not).

Correctness. The signature scheme is correct if for all (vk, sk) output by Setup and all messages m € M,

Pr[Verify(vk, m, Sign(sk,m)) = 1] = 1.

Unforgeability. We start by defining the unforgeability experiment:

Existential unforgeability experiment:

« The challenger samples (vk, sk) < Setup and gives vk to the adversary.
« The adversary can now make signing queries to the challenger:

- Signing query: The adversary sends m € M to the challenger. The challenger replies with o « Sign(sk, m).

+ The adversary A outputs a message m* € M and signature ¢* € S.

We say an adversary A is admissible for the signature unforgeability game if the adversary does not make a signing
query on the message m*. We say the signature scheme satisfies unforgeability if for all efficient and admissible
adversaries A,

Pr[Verify(sk, m*, 6*) = 1] = negl(}).

	Cryptographic Building Blocks
	Symmetric Encryption
	Message Authentication Codes
	Block Cipher Modes of Operation
	Public-Key Encryption
	Digital Signatures

