
CS 346: Cryptography Spring 2023

Homework 2: Symmetric Cryptography

Due: February 20, 2023 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/sp23/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: Key Leakage in PRFs [20 points]. Let F : {0,1}n × {0,1}n → {0,1} be a secure PRF. Use F to
construct a function F ′ : {0,1}n+1 × {0,1}n → {0,1} with the following two properties:

• F ′ is a secure PRF.
• If the adversary learns the last bit of the key, then F ′ is no longer secure.

(a) Describe your construction F ′ : {0,1}n+1 × {0,1}n → {0,1}. Hint: Consider changing the value of F at a
single point. Namely, consider a construction where

F ′(k∥b, x) =
{

F (k, x) x ̸= 0n

y x = 0n
.

Think about how you would choose the value of y ∈ {0,1} to satisfy the stated requirements.

(b) Show that if F is a secure PRF, then your construction F ′ is a secure PRF.

(c) Show that your construction F ′ is insecure against an adversary that learns the last bit of the key
(i.e., at the beginning of the PRF security game, the challenger gives the last bit of the PRF key to the
adversary). Specifically, give a complete description of your adversary and compute its advantage.
This problem shows that leaking even a single bit of the secret key can break PRF security.

Problem 2: The BEAST Attack [14 points]. The TLS 1.0 protocol (used to protect web traffic) used
AES-CBC encryption with a predictable IV. Specifically, instead of sampling a random IV, the TLS 1.0
implementation set the IV to be the last ciphertext block from the previous ciphertext (i.e., the IV for the
(i +1)st message is the last ciphertext block of the i th message).

(a) State two advantages for choosing the IV in this manner compared to choosing a random IV.

(b) Unfortunately, this variant of AES-CBC is insecure. Describe a CPA-adversary against this scheme
that wins with advantage 1 (include an explicit advantage calculation in your answer). You may
assume that a random IV is used for the first ciphertext. Hint: It suffices to consider single-block
messages. This exploit was the basis of the BEAST attack on TLS 1.0 (2011). The take-away is that
simple (and seemingly benign) modifications to a cryptographic protocol can completely break
security!

https://www.cs.utexas.edu/~dwu4/courses/sp23/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/fa22/info.html
https://docs.secureauth.com/pages/viewpage.action?pageId=14778519


Problem 3: CBC Padding Oracle Attack [20 points]. Recall that when using a block cipher in CBC
mode, the message must be a multiple of the block size. When encrypting messages whose length is not
a multiple of the block size, the message must first be padded. In the TLS protocol (used for securing
traffic on the web), if v bytes of padding are needed, then v bytes with value (v −1) are appended to the
message. As a concrete example, if 1 byte of padding is needed, a single byte with value 0 is appended
to the message before applying CBC encryption. In TLS, the record layer is secured using an approach
called “MAC-then-Encrypt1” (which as we will soon see, is not the ideal combination). At decryption time,
the ciphertext is first decrypted (and the padding verified) before checking the MAC. In older versions
of OpenSSL, the library reports whether a decryption failure was due to a “bad pad” or due to a “MAC
verification failure.” One might think that it was beneficial to provide an informative error message on
decryption failure. As you will show in this problem, this turns out to be a disaster for security.

Suppose an adversary has intercepted a target ciphertext ct encrypted using AES-CBC. Let cti be any
non-IV block in ct. Let mi be the associated message block. Show that if the adversary is able to submit
ciphertexts to a CBC decryption oracle and learn whether the padding was valid or not, then it can learn
the last byte of mi with probability 1 by making at most 512 queries. Here, the CBC decryption oracle only
says whether the ciphertext was properly padded or not; it does not provide the output of the decryption
if successful. Then, show how to extend your attack to recover all of mi . Hint: Start by showing how to
test whether the last byte of mi is some value t by making 2 queries to the decryption oracle.

Remark: Are there settings where the server would repeatedly decrypt ciphertexts of the user’s choosing?
It turns out that when using IMAP (the protocol email clients use to fetch email) over TLS, the IMAP client
will repeatedly send the user’s password to the IMAP server to authenticate. With the above padding
oracle (implemented using a “timing channel”), an adversary can recover the client’s password in less
than an hour! This problem shows that if a decryption failure occurs, the library should provide minimal
information on the cause of the error. This type of “padding oracle” attack was the basis of the “Lucky 13”
attack on TLS 1.0 (2013)—many years after they were first discovered (2002) and thought to be patched!

Problem 4: Cryptographic Combiners [20 points]. Suppose we have two candidate constructionsΠ1,Π2

of a cryptographic primitive, but we are not sure which of them is secure. A cryptographic combiner
provides a way to use Π1 and Π2 to obtain a new construction Π such that Π is secure if at least one of
Π1,Π2 is secure (without needing to know which ofΠ1 orΠ2 is secure). Combiners can be used to “hedge
our bets” in the sense that a future compromise of one ofΠ1 orΠ2 would not compromise the security of
Π. In this problem, we will study candidate combiners for different cryptographic primitives.

(a) Let H1, H2 : {0,1}∗ → {0,1}λ be arbitrary collision-resistant hash function candidates. Define the
function H(x) := H1(x)∥H2(x). Prove or disprove: if at least one of H1 or H2 is collision-resistant,
then H is collision-resistant.

(b) Let (Sign1,Verify1) and (Sign2,Verify2) be arbitrary MAC candidates2. Define (Sign,Verify) as follows:

• Sign((k1,k2),m): Output (t1, t2) where t1 ← Sign1(k1,m) and t2 ← Sign2(k2,m).

• Verify((k1,k2), (t1, t2)): Output 1 if Verify1(k1,m, t1) = 1 =Verify2(k2,m, t2) and 0 otherwise.

Prove or disprove: if at least one of (Sign1,Verify1) or (Sign2,Verify2) is a secure MAC, then (Sign,Verify)
is a secure MAC.

1In MAC-then-encrypt, the encryption algorithm first computes a MAC t on the message m, and the ciphertext is the encryption
of the message-tag pair (m, t ).

2Namely, you can assume that they are correct (but could be arbitrarily broken).

https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1069/1069.pdf


Problem 5: Time Spent [1 point]. How long did you spend on this problem set? This is for calibration
purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?


