
How do we combine confidentiality and integrity?
->
Systems with both guarantees are called treatedencryption schemes - gold standard for symmetric encryption

#eraloptions:
1.Encrypt-then MAC (TLS 1.2+, IPsec) <guaranteed to be secure if we instantiate using CPA-secure encryption

< and a secure MAC
2.MAC-then-encrypt (SSL3.0/TLS 1.0, 802.11.) -

as we will see, not always secure

#inition. An encryption scheme TIsE:(Encrypt,Decrypt) is an authenticated encryption scheme if it satisfies the following two properties:
-> CPA security I confidentiality]
-

ciphertext integrity (integrity]
adversary

T#aimsof
enga

-

and Decrypt (1C) * c

"Prcial symbol + to denote aid ciphertext↓ routput 1 if <P9c,,22.... 3

Define CIAdvIA, TsE] to be the probability that output of above experiment is 1. The scheme TISE satisfies

ciphertext integrity it for all efficient adversaries A,

CIAdvIA, TIsE] = negIsecurity parameter determines key length

Ciphertext integrity says adversary cannot come up
with a new ciphertext: only ciphertexts it can generate are those that are

already valid.Why do we want this property? Encrypted under KA
KA, kB kE

Consider the following active attack scenario: Ma mail server

-

Each user shares a key with a mail server

-

To send mail, user encrypts contents and send to mail server kaAlicr kopYorBrgeen- Mail server decrypts the email, re-encrypts it under recipient's key and delivers email

modifies message
Encrypted under KA

If Eve is able to tamper with the encrypted message,
~

SkA, kB kE
then she is able to learn the encrypted contents (even if #A mail ↓
the scheme is CPA-secure)

KA kB scrveLeaseserie-> More broadly, an adversary can tamper and inject ciphertexts Alice Bob

into a system and observe the user's behavior to learn information

about the decrypted values- against active attackers, we need stronger notion of security

#inition. An encryption scheme Tsi (Encrypt, Decrypt) is secure against chosen-ciphertext attacks (CCA-secure) it for all efficient

adversaries A, CCAAdvIA, TSE] = neg)where we define (CAAdUTA, TISE] as follows:

b790,13

mi

troutt
b't 90,13 adversary can make arbitrary encryption and decryption queries,

but cannot decrypt any ciphertexts it received from the

&CAAdrIA,TTsE] = 14r7b' =1(b =0] - Pr(b' =11b =1]) challenger (otherwise, adversary can trivially break security (

->called an "admissibility" criterion

CCA-security captures above attack scenario where adversary can tamper with ciphertexts
↳ Rules out possibility of transforming encryption of XIII to encryption of yIE
2

Necessary for security against aire adversaries [CPA-security is for security against massive adversaries]
↳ We will see an example of a real CCA attack in HWI

#

rem. If an encryption scheme TSE provide authenticated encryption, then it is CCA-secure.

↑(Idea). Consider an adversary A in the CCA-security game. Since TSE provides ciphertext integrity, the challenger's response
to the adversary's decryption query will be with all but negligible probability.This means we can implement the

decryption oracle with the "output 1" function. But then this is equivalent to the CPA-security game.
[Formalize using a hybrid argument] simple counter-example: concatenate unused bits to end of ciphertext

in a CCA-secure scheme (stripped away duringf decryption)
Note: converse of the above is not true since (CA-security of ciphertext integrity.
↳ However, CCA-security + plaintext integrity

> authenticated encryption

#away: Authenticated encryption captures meaningful confidentiality + integrity properties; provides five security

↑

then-MAC: Let (Encrypt. Verify) be a CPA-secure encryption scheme and (Sign,Verify) be a secure MAC. We define

Encrypt-then-MAC to be the following scheme:

Encrypt((KE, km), m): c = Encrypt (kE, m)
↑M

*pendent keys
+ - Sign (km, c)

output (c,t)

Decrypt" ((KE,km), (c,+1) : if Verify (km, c, t) = 0, output I
else, output Decrypt (kE, c)

#heorem. If (Encrypt, Decrypt) is CPA-secure and (Sign, Verify) is a secure MAC, then (Encrypt's Verify') is an authenticated

encryption scheme.

f.(sketch). CPA-securityfollows byCPA-securityof (Encrypt, Decrypt). Specifically, the MAC is computed on ciphertexts and not

the
messages. MAC keyis independentof encryption key so cannotcompromise CPA-security.

Ciphertextintegrityfollows directlyfrom MAC security(i.e., any valid ciphertextmustcontain a new tag on some

ciphertext thatwas notgiven to the adversarybythe challenger.)

Importantnotes: - Encryption
+MAC keys mustbe pendant. Above proof required this (in the formal reduction, need to be able to

Simulate ciphertexts /MACs - onlypossible ifreduction can choose its own key).
↳ Can also give explicitconstructions thatare retelybroken if same key is used (i.e., both properties fail to

hold)
↳ In general, never nese cryptographic keys in differentschemes; instead, sample fresh, independentkeys!

-

MAC needs to be computed over the entire ciphertext
-

Earlyversion of IS0 19772 for AEdid notMAC IV (CBC used for CPA-secure encryption)
-

RNCrypton in Apple iOS (for data encryption) also problematic CHMAC notapplied to encryption IV)
eacnsfreaes

then-Encrypt: Let(Encrypt. Verify) be a CPA-secure encryption scheme and (Sign,Verify) be a secure MAC. We define

MAC-then- Encryptto be the following scheme:

Encrypt')(KE,km), m):t<- Sign (km,m)
c <- Encrypt (KE, (m,t))

outputa

Decrypt" (CKE,km), (c,t): compute (mit) <- Decrypt (KE, c)
if Verify (km, m, t) =1, outputm, else, output+

Notgenerallysecure! SS73.0 (precursor to TLS) used randomized CBC secure MAC

-
Simple CCAattack on scheme (by exploiting padding in CBC encryption)

IPOODLEattack on SSL3.0 can decrypt a encrypted traffic using a CCAattack]

Padding is a common source of problems with MAC-then-Encryptsystems [see HWA for an example]

In the past, libraries provided separate encryption
+MAC interfaces

-

common source of errors

↳ Good librarydesign for crypto should minimize ways
for users to make errors, notprovide more flexibility

Today, there are standard blockcipher modes of operation thatprovide enticatedencryption
- One of the mostwidely used is GCM (Galois counter model - standardized byNISTin 2007

-mode:follows encrypt-then-MAC paradigm
-

CPA-secure encryption is nonce-based counter mode Mostcommonlyused in conjuction with AES

- MAC is a Carter-Wegman MAC
3 SAES-GCM provides authenticated encryption)

↳ "encrypted one-time MAC"

#encryption:encryptmessage with AES in counter mode ~
Galois Hash

~
keyderived from PRF

L
evaluation aton

compute Carter-Wegman MAC on resulting message using
SYASH as the underlying hash function

and the block cipher as underlying PRF & CHASHoperates on blocks of 128-bits

operations can be expressed as operations over

Typically, use SGCM for authenticated encryption GF(218) - Galoisfield with 118 elements

implemented in hardware - very
fast!

Oftentimes, onlypartofthe payload needs to be hidden, butstill needs to be authenticated
-

↳
e.g., sending packets over a network:desire confidentialityfor packetbody, butonlyintegrityfor packetheaders (otherwise, cannotroute!)

AEAD:authenticated encryption with associated data

↳

augmentencryption scheme with additional plaintextinput;resulting ciphertextensures integrityfor associated data, butnotconfidentiality
Iwill notdefine formallyhere butfollows straightforwardlyfrom AEdefinitions

↳>
can constructdirectlyvia "encrypt-then-MAC": namely, encryptpayload and MAC the ciphertext associated data

↳ AES-GCM is an AEAD scheme

