
Diffie-Hellman key-exchange is an anonymous key-exchange protocol:neither side knows who they are talking to
-

↳ vulnerable to a "man-in-the-middle"attack

Alice Alice Observe Eve can

Rob me ↳Eve,
Bob

I now decryptall
of the messages

giz # between Alice and
-

↓ ↓X Bob and Alice +Bob

gxy Yxy yZ, have no idea!xZz gYEz gYE, g
I

Whatwe require: Anticated key-exchange (notanonymous) and relies on a rootof trustleg, a certificate authority)
↳ On the web, one of the parties

will attenticate themself bypresenting a eficate

To build authenticated key-exchange, we require more ingredients
- namely, an integritymechanism [e.g., a way to bind a

message to a sender - a "public-keyMAC"or asignature]~We will revisitwhen discussing the TLS protocol
Digital signature scheme: Consists of three algorithms:

-

Setup - (vk, sk): Outputs a verification key rk and a signing key sk
-

Sign (sk, m) + 0: Takes the signing key sk and a message on and outputs a signature o
-

Verify (rK,m,o) -> 011: Takes the verification key ok, a message m, and a signature o, and outputs a bit of1

Two requirements:
-

reectress.For all messages me M, luk, sk) - Setup, then

Pr[Verify(vk, m, Sign(sk,n)) =1] =1. THonestly -generated signatures aways verify)
-

trgeability: Very similar to MAC security. For all efficientadversaries A, SigAdr[A] =PrTW=1]
=regle), where

W is the outputof the following experiment:
adversary

Inism,ten
setup

-

(m*, o*)

Let m,...., MQbe the signing queries the adversarysubmits to the challenger Then, W=1 if and onlyif:

Verify (rK, m*, ox)
=1 and m*4 (m,

,
. .

.,
ma

Adversarycannotproduce a valid signature on a new message.

Exact analog of a MAC (slightlyweakerunforgeability:require adversaryto notbe able to forge signature on new message)
↳ MAC securityrequired thatno forgery is possible on any message Ineeded for authenticated

encryption] digitalsignature elliptic-curred standards (widely used
galgorithm DSA on the web-e.g.,TS)

Itis possible to build digital signatures from discrete log based assumptions (DSA, ECDSA)
↳ But construction notintuitive until we see zero knowledge proofs
↳ We will firstconstructfrom RSA(trapdoor permutations)

We will now introduce some facts on composite-order groups:

LetN =

pg be a productof two primes pig. Then, XN
=90,1,..., N-13 is the additive group of integers

modulo N. LetT*be the setof integers thatare invertible (under mication) modulo N.

x =YN*if and onlyif ged(x,N)
=1

SinceN=pg and
p. g are prime, gcd(X,N)=1unless X is a multiple of p or 9:

12 =N
-p
-

g
+1 =

pq
-

p
-

g
+1 =(p - 1)(g- 1) =4(r)

*
Euler's phi function

Recall Lagrange's Theorem: (Euler's totientfunction)
for all x=X*: xY(N) =1 (modN) [called Euler's theorem, butspecial case of Lagrange's theorem)

o
important: "ring ofexponents"operate modulo Y(N) =(p-2)(g- z)

Hard problems in composite-order groups:
-

Factoring: given N=pg where
p
and I are sampled from a suitable distribution over primes, outputp, gen

-

aingcube roots: Sample random x &. Given
y
=x"(modN), compute x(modN).

↳ This problem is easytoa namelycompute
3" (modp-1), say using

Euclid's algorithm, and
then compute y

↳
Why does this procedure not work in 2. Above procedure relies on computing 5" (mod (T1)

=3" (mod Y(N1)

Butwe do notknow 4(N) and computing 4(N) isadas factoring N. In particular, if we
know N and 4IN), then we can write

E N =pg [both relations hold over the integers]
-(N) =(p- 1) (g- 1)

and solve this system of equations over the integers (and recover p,g)

Hurdness of computing cube roots is the basis of the Assumption:
distribution over prime numbers (size determined by security parameter il

~V
#assumption:Take pig

- Primes, and setN= pg. Then,
for all efficientadversaries A,

PrIxc*; y =A (N,x): y
= x) =

regl.
↳

more generally, can replace 3 with anye where godle,4(N1)=1I R

↑
common choices:HardnessofRSA reliesonon beinghardtocompute,

and thus, on hardness offactoryone
e
=3

e =65537

Hardness of factoring/RSAassumption:
- Bestattack based on general number field sieve (ONFS) - runs in time -20(rigi)

same algorithm used to break discrete log over p*) large key-sizes and computational
-

For 112-bits ofsecurity, Use RSA-2048 (N is productoftwo 1024-bit primes)
-

cost-ECC generally
preferred over RSA

128-bits ofsecurity, use RSA-3072

-

Both prime factors should have solar bit-length (ECM algorithm factors in time thatscales with smaller factor)

RSA problem gives an instantiation of more general notion called a trapdoopermutation:
FRSA: In -> In

FRSA(X) = =xe (mod N) where gad(N, e) =1
Given YIN), we can compute

d =e"(mod YIN)). Observe thatgiven d, we can invert FRSA:

FRA(x) = =xd(modN).

Then, for all X=IV:

FRA (ErsA(x)) =(ye)d =yed(md4(N1) =x=
=x(mod N).

orpermutations:Atrapdoor permutation (TPP) on a domain & consists of three algorithms:
-Setup -> (pp, +d): Outputs public parameters pp

and a trapdoor to
-

Flpp, x) -> y: On inputthe public parameters pp and inputX, outputs y=X
-

F(td,y) -X: On inputthe trapdoor to and inputy, output x=X

Requirements:
- crtness: for all up outputby setup:

=> F(pp,.) implements a permutation on X.

-

F
"

(+d, F(pp,x)) =x for all x = X.
-

Security: Flpp, a) is a one-way
function (to an adversary who does notsee the trapdo)

Naive approach (common "textbook"approach) to build signatures:
LetCF, F-1) be a trapdoor permutation

verificationbywillbe to sign amessagemecompute5Itnee
Correctbecause:

F(pp, 0) =F(pp, F"(td,m)) =

m

Secure because Fis hard to compute withouttrapdoor (signing key) EE!
↳ This is nottrue!Securityof TDPjustsays thatIis one-way. One-wayness justsays function is hard

to inverton a mom input. Butin the case of signatures, the mage is the input. This is notonly
not random, butin fact, adversarially chosen!

↳ Very easy to attack. Consider the O-query adversary:
Given verification key vk =pp, compute F(pp, of for any ofX

OutputM
=F(pp, o) and o

↳ By construction, or is a valid signature on the message m, and the adversarysucceeds
with advantage 1.

Textbook RSAsignatures: [NEVER USETHIS!]

Setup:Sample (N, e, d) where N=pg and ed = 1 (mod YIN1)

-d OutputUK =(N,e) and sk =d 3 Looks tempting (and simple)...
d

Sign (sk, m):Output0 =in (modN) butbroken!
Verify (vis? m, o):Output 1 if

=

m (mod N)

M

Signatures from trapdoor permutations (the full domain hash):
In order to appeal to securityof TDY, we need thatthe argumentto

F"(td,o) to be dom

Idea: hash the message firstand sign the hash value (often called "hash-and-sign")
↳ thebenefit: Allows signing long messages (much larger than domain size ofTDF)

#

construction:

-Setup: Sample (pp, d) - Setup for the TDP and outputrk:pp, sk
=+d

-

Sign (sk,m):Output0= F"(+d, H(m1)
-

Verify (rK, m,o): Output1 ifF(pp, 0) =H(m) and 0 otherwise

Ihorem. If Iis a trapdoor permutation and H is an ideal hash function (i.e.,"random oracle") then the fulldomain

hash signature scheme defined above is secure.

#Idea:Signature is distic, so to succeed, adversaryhas to forge on an unqueried message m.

Signature on m is preimage of 5 atH(m)
↳ Adversary has to invert I at room input (when H is modeled as a random oracle)

How to simulate signing queries?
↳Relies on "programming"the random oracle

some (partial) attacks can

exploitvery small public exponent

Recap: RSA-FDH signatures: ↳
(e =3)

Setup: Sample modulus N, e, d such thated=1 (mod Y(N)) - typically e
=3 or 2 =65337

OutputUK
=(N, e) and sk =(N,d)

Sign (sk,m):0 =H(m)
d [Here, we are assuming thatH maps into 4N*]

Verify (rK,m,0): output1 if H(m) =oe and 0 otherwise

Standard: PKCSI v1.3 (typicallyused for signing certificates)
↳ Standard cryptographic hash functions hash into a 256-bitspace (e.g., SHA-256), butFDH requires Judain
->PKCS 1 v1.5 is a way to pad hashed message before signing:
.

FF...FFFF OODI!
message hash (e.g., computed using SHA-256)-at16 bits

digestinfo

Je.g., whichhashfunctionteS

↳

Padding importantto protectagainstchosen message attacks (e.g., preprocess to find messages me, me, my where H(m) =H(mz). H(ms1)
(butthis is nota full-domain hash and atprove securityunder RSA- can make stronger assumption ...)

