
↑Is 1.3 and authenticated key-exchange protocols on the Internet typically provide sided authentication (i.e., client learns id of

the server, but not vice versal

&

estion: how does the client authenticate to the server (without providing a certificate)
->

e.g., how does client login to a web service?

client and server assumed to have I e.g. client has a password and server I#

setting: some shared state has an HMA) of the password
(sk) (v)
client Server

-

*
protocol 3 (not replace this with anonymous key exchange

-

client learns..
↳>becomes vulnerable to a man-in-the-middle attack

server's identity -
*

identification protocol
--

#atodels: Adversary's goal is to authenticate to server

-attack: adversary only sees uk and needs to authenticate

(e.g., physical analogy: door lock-adversary can observe the lock, does not see the key sk)
#

droppingattack: adversary gets to observe multiple interactions between honest client and the server

(e.g., physical analogy: wireless car key-adversary observes communication between car key and car)
attack: adversary can impersonate the server and interact with the honest client

(e.g., physical analogy: take ATM in the mall-honest clients interact directly with the adversary)

Simple (insecure) password-based protocol:

↓

ent Isk:prd] Trk: pwd]
t

>

↓

accept if uk = pwd

Not secure even against direct attacks! Adversary who learns uk can authenticate as the client adversary who breaks into serverI
learns user's password. 3

NEVER STORE PASSWORDS IN THE CLEAR!

*bettersolution hash the passwords before storing server maintains mappings
Alice - H(pwdAlice
Bob H H(prdpob)

where I is a collision-resistant hash function

dent [sk: pwd] server [Vk: H(pwdl]

An
↓

accept if

vk =H(pwdl

If passwords have high entropy, then hard to recover pad from Alpwa) [by one-wayness of HT
->But not true in practice...

Users often choose weak passwords (e.g., 123456, password, 123456789, ...
&With a dictionary of 360 million entries, can cover about 25% of user passwords Based on password hashes that have

(3% choose 123456) 3 been leaked from compromised
&atabases

(10% choose
among top 25 common passwords)

Simple hashing vulnerable to "offline dictionary attack"

adversary computes table (pod, H(pwd)) for common passwords - completely offline

given H(pwd), can now invert with a single lookup if pod is contained in the database

for LinkedIn breach in 2012, attacker stole password file with 6 million passwords
Call passwords hashed using single iteration of unsalted SHA-1) ->90% of passwords recovered in -bdays!

↑blem: One-time precomputation (computing the lookup table) can be used to compromise any passwords
Overall cost of attack: 0 (m + n) where m is the dictionary size and n is the number of passwords to attack

#1: alt passwords before hashing: namely when storing password pad, sample salt 90,13" and store

Isalt, HIsalt/I pwdl) on the server ↑

*

te: Salt is a public value (needed for verification) typically, n2 64

Offline dictionary attack no longer effective since every salt value induces different set of hash values

Overall cost of dictionary attack: 0 (mn)
- need to rehash dictionary for every salt

* #2: Use a or hash function (SHA-1 is very fast-enables fast brute-force search]
- PBKDF2 (password-based key-derivation function): iterate a cryptographic hash function many

times:

(or barypt) PBKDFG (pod, salt):Asallpwd)...() honest user only needs to evaluate

can use 100,000 or f hash function once per authentication;
1,000,000 iterations of SHA-256 adversary evaluates many times

#back: custom hardware can evaluate SHA-256 ry fast
-

scrypt (more recent:Argonai): slow hash function that needs lots of (space) to evaluate

4custom hardware do not provide substantial savings (limiting factor is space, not compute
Can also use a ped hash function (e.g., HMAC with key stored in HSM)

->ensures adversary who does not know key cannot brute force all!

*practice: Always salt passwords
Always use a slow hash function (e.g., PBKDF2, scrypt) or keyed hash function or both!

raw MD5 hash - not secure. Facebook password onion

&aitedketedtointenote service ↓
Circa 2014)

layers gradually added over time to

slow hash function achieve better security
and probably to avoid password)(

rehashing

Password-based protocol not secure against eavesdropping adversary
(adversary sees via and transcript of multiple interactions between honest prover

+ honest verified

One-time passwords (SecurID tokens, Google authenticator, Duo
(OTP)

#

rction 1: Consider setting where verification key uk is secret (e.g., server has a secret)
-

Client and server have a shared PRF key K and a counter (initialized to 0) :

client (k,c) server (k,c)

cy'zF(k,c)
1-2

xx- c+ 1 I check thaty
=F(k,c) and c' > c (no replaying) carteentication3

concretely: can interpret if successful, update (cc"

output as 6-digit
number

↑

SecurID: stateful token (counter incremented by pressing
button on token

->State is cumbersome need to maintain consistency between client/server
↑

Authenticator: time-based OTP: counter replaced by current time window (e.g., 30-second window)

#PRF is secure above protocol secure against eavesdroppers (but requires ever secrets)

↳> can be problematic: RSA breached

#ruction 2: No server-side secrets (S/key)
~
"under composition" in 2011 and SecurID tokens compromised

- Relies on a hush function (should be one-way) and used to compromise defense

- Secret key is random input x and counter n; contractor Lockheed Martin

Verification key is HY(x)
=H(H(...H(x)..()
-

~evaluations of H

produ prdu- pode pads
↓ ↓ ↓ ↓

to verify y: check H(y)EvK attacker has to invert H

8-8-78 -...8->. ->
if successful, update vk = y

3 in order to authenticate

xH(x) H(2)(x) H(v(x) H(r-Y(x) H((x) =vk

- Verification key can be public (credential is preimage
of UK)

↳Can support bounded number of authentications (at most n) - need to update key after a logins
-.

->

Output needs to be large (280 bits or 128 bits) since password is the input/output to the hash function
-

Naively, client has to evaluate I many times
per authentication (vO(n) times)

&Can reduce to OCloga) hash evaluations in an amortized sense by storing Ollogn) entries along the hash chain

no man-in-the-middle
Thus far, only considered passive adversaries, but in reality, adversaries can be malicious ↑ I- -rotection

-Adversary can impersonate server (e.g., phishing) and then try to authenticate as client (but cannot interact with client during anth.)
- All protocols thus far are valuerable aconsist of client sending token that server checks, which can be extracted byI I

active adversary
- For active security, we use age-response

