CS 346: Introduction to Cryptography

Attacks and Reductions in Cryptography

Instructor: David Wu

In this short note, we give several examples of proofs involving PRGs and PRFs.

PRG security. Let’s begin by reviewing the PRG security game:

The PRG security game is played between an adversary A and a challenger. Let G: {0,1}} — {0,1}"
be a candidate PRG. The game is parameterized by a bit b € {0, 1}:

1. If b = 0, the challenger samples a seed s & {0,1}* and computes t < G(s). If b = 1, the
challenger samples a random string t <~ {0, 1}".

2. The challenger gives t to A.

3. At the end of the game, A outputs a bit b’ € {0, 1}.

For an adversary A, we define its PRG distinguishing advantage PRGAdv[A, G] to be the quantity
PRGAdV[A,G] = |Pr[b'=1|b=0] -Pr[b' =1|b=1]].
Finally, we say that a a PRG G is secure if for all efficient adversaries A,
PRGAdv[A, G] = negl(A).

We will often refer to this game (also called an “experiment”) where b = 0 as PRGExp,[A, G] and the game
where b = 1 as PRGExp, [A, G]. In this case, we can also write

PRGAdv[A, G] = [Pr [A outputs 1 in PRGExp,[A, G]| — Pr [A outputs 1 in PRGExp, [A, G]]|.

Example 1 (An Insecure PRG). Suppose G: {0,1}} — {0,1}" is a secure PRG and define G’: {0,1}} —
{0,1}™* to be G’(s) = G(s)||s. We show that G’ is not a secure PRG.

Proof. We construct an adversary A for G’ as follows:

1. Oninput t € {0,1}"**, A parses the input as t = t;||t, where t; € {0,1}" and t, € {0,1}".
2. Output 1if G(#;) = t; and 0 otherwise.

By construction, algorithm A is efficient (i.e., runs in polynomial time). We compute A’s distinguishing
advantage:

« Suppose b = 0. In this case, t < G’(s) where s & {0, 1}*. By construction of G’, t = t;||t, where
G(ty) = t;. In this case, the adversary outputs 1 with probability 1.

« Suppose b = 1. In this case, ¢ & o, 1}’”’1. In particular, #; and ¢, are independently uniform, so
Pr[t; = G'(t;)] = 1/2™.



The distinguishing advantage of A is then
PRGAAV[A,G'] = Pr[b'=1|b=0]-Pr[b'=1|b=1]|=1-27",
which is non-negligible. O

Example 2 (A Secure PRG). Suppose G: {0,1}* — {0,1}" is a secure PRG and define the function
G’: {0,1}* — {0,1}" to be the function G’(s) = G(s) ® 1". Namely, G’ simply flips the output bits of G.
We show that if G is secure, then G’ is also secure.

Proof. When proving statements of this form, we will prove the contrapositive:

If G’ is not a secure PRG, then G is not a secure PRG.

To prove the contrapositive, we begin by assuming that G is not a secure PRG. This means that there exists an
efficient adversary (A that breaks the security of G’ with non-negligible advantage ¢ (i.e., PRGAdv[A,G’] =
¢). We use A to construct an efficient adversary B that breaks the security of G:!

1. At the beginning of the game, algorithm B receives a challenge ¢ <~ {0,1}" from the challenger.
We are constructing an adversary for the PRG security game for G. This game begins with the
challenger sending a challenge t € {0, 1}" to the adversary where either t « G(s) or t < {0, 1}".

2. Algorithm B starts running algorithm A. Essentially, we are constructing a reduction here. Our
goal is to reduce the problem of distinguishing G to the problem of distinguishing G’. To do this,
we will rely on our adversary A for distinguishing G’.

3. Algorithm 8 sends t ® 1" to A and outputs whatever A outputs. Algorithm A is an adversary
for G’, so it expects a single input ¢t € {0, 1}" where either t « G’(s) or t < {0,1}". Note
that this is the only setting for which we have guarantees on the behavior of A. The behavior
of algorithm A on a string drawn from some other distribution is undefined. As part of our
analysis, we need to argue that 8 correctly simulates the view of A in the PRG distinguishing
game against G'.

First, if A is efficient, then B is also efficient (by construction). It suffices to compute the distinguishing
advantage of algorithm 8. We consider two cases:

« Suppose b = 0. Then, B receives a string t < G(s) where s & {0, 1}*. In this case, t @ 1" is precisely
the value of G’ (s). Namely, 8 has simulated PRGExp,[A, G’] for A. Since A is a distinguisher for
G’, this means that

Pr[B outputs 1 | b =0] =Pr [ﬂ outputs 1 in PRGExp,[A, G']] .

« Suppose b = 1. Then, B receives a random string t <~ {0, 1}". Since t is uniformly random over
{0,1}", the string t & 1" is also uniformly random over {0, 1}". This means that 8 has simulated
PRGExp, [A, G’'] for A. This means that

Pr[Boutputs1 | b=1] =Pr [ﬂ outputs 1 in PRGExp, [A, G’]] .

In the following description, we provide some clarifying remarks in green. These remarks are unnecessary in a formal proof.



We conclude now that the distinguishing advantage of 8 is exactly

PRGAdv[8B,G] = |Pr[B outputs 1 | b = 0] — Pr [B outputs 1 | b = 1]|
= |Pr [A outputs 1 in PRGExp,[A, G']| — Pr [A outputs 1 in PRGExp, [A, G']]|
— PRGAdV[A,G'] = ¢,

which is non-negligible by assumption. ]

PRF security game. Next, we review the definition of a secure PRF. Let F: K X X — Y be a function
with key-space K, domain X, and range Y. The PRF security game is defined as follows:

The PRF security game is played between an adversary A and a challenger. Let F: K X X — Y be a
candidate PRF. The game is parameterized by a bit b € {0, 1}:

1. If b = 0, then the challenger samples a key k <~ K and sets f « F(k,-). If b = 1, the challenger
samples a uniformly random function f <- Funs[X, Y].

2. The adversary chooses x € X and sends x to the challenger.

3. The challenger replies with f(x).

4. The adversary can continue to make queries to the adversary (repeating steps 2 and 3). At the
end of the game, adversary outputs a bit b’ € {0, 1}.

For an adversary A, we define the PRF distinguishing advantage PRFAdv[A, F] to be the quantity
PRFAAV[A,F] = |Pr[b’'=1|b=0] -Pr[b'=1|b=1]|.
We say that a PRF F is secure if for all efficient adversaries A,
PRFAdv[A, F] = negl(1),

where A is a security parameter (typically, the keys of the PRF are poly(A) bits long: log || = poly(4)). Sim-
ilar to the case with PRGs, we will often refer to the game (or “experiment”) where b = 0 as PRFExp, [ A, F]
and the game where b = 1 as PRFExp, [A, F]. In this case, we can write

PRFAdv[A, F] = |Pr [ﬂ outputs 1 in PRFExp,[A, F]] - Pr [ﬂ outputs 1 in PRFExp, [A, F]]| .

Example 3 (An Insecure PRF). Suppose F: {0,1}"x{0,1}" — {0, 1}" is a secure PRF and define F’": {0, 1}"X
{0,1}" — {0,1}" to be F’'(k,x) = F(k,x) & F(k, x & 1™). We claim that F’ is not a secure PRF.

Proof. We construct an adversary A for F” as follows:

1. Submit the query x; = 0" to the challenger. The challenger replies with a value y;.
2. Submit the query x; = 1" to the challenger. The challenger replies with a value ys,.
3. Output 1if y; = y, and 0 otherwise.

By construction, A is efficient (i.e., runs in polynomial time). We compute A’s distinguishing advantage:



« Suppose b = 0. In this case, the challenger samples k <~ {0, 1}" and replies with

y1 = F'(k,x1) = F(k, x1) ® F(k, x; & 1) = F(k,0") & F(k, 1")
yo = F'(k, x2) = F(k, x2) ® F(k, x, ® 1") = F(k,1") & F(k, 0").

In this case y; = y;, and A outputs 1 with probability 1.

« Suppose b = 1. In this case, the challenger samples f < Funs[{0,1}", {0,1}"] and replies with
y1 = f(x1) and y, = f(x2). Since x; # x2, y; and y, are independent and uniformly random. Thus,

Pr[y; = yo] = 1/2".
The distinguishing advantage of A is then
PRFAV[A,F'] = |Pr[b'=1|b=0] -Pr[b'=1|b=1]|=1-27",
which is non-negligible. ]

Example 4 (A Secure PRF). Suppose F: K'x X — {0,1}" is a secure PRF. Then, the function F’: K?x X —
{0,1}" where F’((ki, k2), x) = F(ky,x) & F(k», x) is also a secure PRF.

Proof. Similar to the case with PRGs, we will prove the contrapositive:

IfF’ is not a secure PRE, then F is not a secure PRF.

To prove the contrapositive, we begin by assuming that F’ is not a secure PRF. This means that there exists an
efficient adversary (A that breaks the security of F/ with non-negligible advantage ¢ (i.e., PRFAdv[A, F’'] = ¢).
We use A to construct an adversary 8 that breaks the security of F:

1. Choose a key k;, < K.
2. Start running the adversary A for F’.

(a) Whenever A makes a query x; € X, forward the query to the challenger to obtain a value
y; € {0,1}". Give y; ® F(ky, x;) to A.

3. Output whatever A outputs.

Observe that the number of queries 8 makes is the same as the number of queries that A makes. Thus, if
A is efficient, then B is also efficient. It suffices to compute the distinguishing advantage of algorithm 8.
We consider two cases:

« Suppose b = 0. In this case, the challenger in PRFExp,[B, F] samples a key k <~ K and replies with
y; < F(k, x;) on each query. Algorithm 8 in turns replies to A with the value

Yi ] F(kz,xi) = F(k, x,-) D F(kz,xi) = F/((k, kz),xi).

Since k and k; are both sampled uniformly and independently from %, algorithm B answers all of
A’s queries according to the specification of PRFExp,[A, F’]. Thus,

Pr [B outputs 1 | b = 0] = Pr [A outputs 1 in PRFExp,[A, F']] .



« Suppose b = 1. In this case, the challenger in PRFExp,[8, F] samples f < Funs[X, {0, 1}"] and
replies with y; « f(x;) on each query. Algorithm 8 in turn replies to A with the value y; ® F (k;, x;) =
f(x;)®F(ky, x;). Since k, is independent of f, and f is a random function, the value of f(x;) ®F (k2, x;)
is uniform and independently random over {0, 1}". Thus, algorithm B answers all of A’s queries
according to the specification of PRFExp, [A, F’], and so

Pr[B outputs 1 | b=1] =Pr [ﬂ outputs 1 in PRFExp, [A, F']] .

By definition, the distinguishing advantage of B is then
PRFAdv[8B, F| = |Pr [B outputs 1 | b = 0] — Pr [B outputs 1 | b = 1]| = PRFAdv[A, F'] = ¢,

which is non-negligible by assumption.



