
So far
,
we have focused on proving properties

manner. Next
, we will look at achieving sinaprivacy-praheriga

efficient to verify.

Application : verifiable computation

program input
client ↳ WS Server

(P
, X)
-->

(x)
How do we know that the server computed the correct value?

↳ Can provide f
y
: P(X). To be useful

, checking thea proo

proof should be much faster than computing P.

Main primitive : aggregation scheme for proofs
- batch argument for NP

Setting : given T statements X
, . . ., XT and circuit C

,
show that

all of the statements are true (i . e., Ewi : Cli , Wi) : I for

all it [T]).

Naively : Give out T proofs , one for each statement Xi
.

Goal : Can we do better. Namely, can we batch
prove

T statements

C
.

with a proof of size o T T

For now , we
will not worry

about zero-knowledge. Turns out that

succinctness can be used to achieve Zero-knowledge.



Batch arguments provide a way to prove (x)
....,
XT) are all true with a proof

whose size scales with 16I - the size of a single proof.

But this is not the setting of verifiable computation :

prove
that y

= P(X) with a proof is that is much shorter

and faster to check than computing the program P

Turns out to be sufficient. In the following , we will model P as a "RAM program"
Crandom access machine).

RAM model : closer model of typical computer
-

Program has access to M bits of
memory

and O(1) bits of local state
-

Initial contents of memory is the input
-

Program consists of a sequence of instructions :
- Read instruction : reads1 bit of memory at any address and update local state
- Write instruction : write I bit to any

address and update local state

-

Output is the contents of the memory

Model RAM program (with M bits of
memory

C execution on input X as follows :
-

Initial State : memory contents is X [Mo = < , sto]
-

On each step of the computation
& contents of local registers

Sti , Mi > Still
, Miti

Suppose there are T steps in the computation
Isto

, Mo)
-> (sti

,
M1) + ... -> (sti

,
Mi)

-- -m

input state purported output state
(known to verifier)

(known to verifier)

Idea: To prove correct evaluation of P(x), give a BARG proof that each of the

above steps is implemented correctly :
- Define IsValid ((sti

,
Mi) , Istiri , Mi+1)) to be predicate that checks correct execution

- Statements will be (Isto , Mo) , (st, ,Mi)) , (1st, , M1) , Cstz,Mul), . . . , (6sti-1 ,Mix) , (sty,Mi)
- Proof is BARG proof that IsValid holds for each statement



Many problems : 1. Verifier does not know intermediate states (Sti
,
Mi).

Communicating these defeats the whole point of delegation.
2. Size of BARG proof scales with size of circuit for checking one step of

computation. This circuit would need to take the contents of memory as

input. As such
,
BARG proof may not be succinct any more !

We need a compressed representation of the memory.

We can represent the contents of the memory by a Merkle hash :

414
O
- - Leaves are labeled by input values

hizy O 434 Internal nodes are labeled by the hash of their
- L / L
O O O O children (under a collision-resistant hash function)
x/ *2 X3 *4 Hash value is value of the rot of the tree

Let h be the root of the Merkle tree (on a values X
, ..., Xu)

- Can
open up

the value X: at position it [n) by revealing sibling nodes along the path
Si .e., can authenticate a value with OXlogn) bits where x is the output length of the

hash function) .
- Given a hash h

, cannot open any index it [n] to two different values Xi #Xi

lotherwise
,
breaks collision resistance of hash function)

Hashing provides a succinct representation. Instead of setting the statements to be (sti
, Mi),

we do the following :
1 . Prover first computes (sto

,
Mo), . . .

,
(Sti

,
Mi) and hashes all of these values to

a state
.

2. Prover gives the hashed value to the verifier. Now
,
the IsValid predicate checks the following:

This is

I
-

Statement is an index :

nowanNP
= Witness is an opening of state to (Mi

, sti) and (Miti , Stir with respect to state.

relation! - IsValid checks validity of the opening and that the state update implemented correctly,

No longer need to communicate intermediate states to the verifier
, only the hash of all of them.

However
,
the IsValid circuit is still large : as large as the memory.



Need to compress memory !

Solution: hash ain!

Each read/write operation isRal (affects only one entry)
-

Suppose h is a hash of the memory contents.

- Read operation : give an opening at
index i to value Xi with respect to he

- Write operation : give an opening at index i to current value x :

opening suffices to compute updated hash with new value at index i

Updated protocol :
1 . Prover computes

(sto
,
Mo), . . .

,
(Sti

,
MT) as before. For each is let hi be the

hash of the
memory contents Mi

.

2
. Prover commits to (sto

, ho) , .... (Sti, hi) with hash state.

3. Prover gives BARG proof for following IsValid relation :

-

Statement : i

- Witness : Openings of state at indices i and its to (sti , hi) and (stiti
,
hit

and openings for hi,hil at associated index

- IsValid checks validity of openings for state and depending on operation
- Read : hi = hit

· Write: him) is correctly derived from hi and bit written

and stitl is correctly computed from sti

Size of proof = size of BARG proof
-IsValid circuit only checks local openings for hash functions and validity of state transition

- If size of local state is constant (or poly(x)), thenlIsValid) = poly (x, log T, log M) .
Total proof size is then poly(x, log T, log M) , which is succinct

, as required.

To prove security : we need that hash function be somewhere extractable (stronger than
collision resistant) , but can be built from similar techniques as for BARGS



Some extensions/applications :
- Functional commitment : commit to an input x and open

to f(x) where f is an

arbitrary function [ require commitment + openings be short !
↳

follows similarly as above by viewing X as initial contents of
memory

and take

BARG proof as the opening [different proof strategy needed to prove security since

Verifier does not know x in this case and cannot certify the initial hash]
-

I
can also realize algebraically with a construction where commitment size and opening
size consists of a constant number of group elements

- Homomorphic signature : given a signature on a message m , derive signature on

f(m) for arbitrary f↳
sign message m and the hash of m. Signature on f(m) is the hash

,
the

signature on the hash, the value y
= h(m) and a proof that y = h(m) with

respect to h(m).
↳ Observe that neither final signature nor verification time depend on original

message size or on the running time of f (modulo log factors).


