
So far
,

we have shown how to build symmetric crypto and public-key crypto from standard lattice assumptions (e.g.,
SIS and LWE)

But it turns out,
lattices have much additional structure => enable

many new advanced functionalities not known to follow from

many other standard assumptions (e.g .,
discre loy , factoring , pairings ,

etc.)

We will begin by studying fully homomorphic encryption (FHE)
->

encryption
scheme that supports abitrary computation on encrypted data [very useful for outsourced computation]

Abstractly :

given encryption ctx of value X under some public key ,
can we derive from that an encryption of f(x) for an arbitrary function f ?

- So far
,

we have seen examples of
encryption

schemes that support one type of operation (e.g., addition) on ciphertexts
- ElGamal encryption (in the exponent) : homomorphic with respect to addition

/ I

- Boheh-Goh-Nissim : addition - 1 multiplication
-

For FHE
, need homomorphism with respect to two operations : addition and multiplication

Major open problem in cryptography (dates back to late 1970s !) - first solved by Stanford Student Craig Gentry in 2009
-
--

↳ revolutionized lattice-based Cryptography !
↳

very surprising this is possible :

encryption needs to "scramble" messages
to be secure

,
but homomorphism requires preserving structure toenableiion

Generalblueprint : 1 . Build somewhat homomorphic encryption (SWHE) -

encryption scheme that supports ed number of homomorphic operations
2. Bootstrap SWHE to THE lessentially a way to "refresh ciphertext)

Focus will be on building SWHE (has all of the ingredients for realizing FHE)

Startingpoint: Reger encryption

pl : A = (5 + et) e*

(Invariant : SA = eT

ski st = [ - jt /1) E
y

ct: r 40,1, = Ar + (M) - as
long as CTr is small

, decryption succeeds

L

9↳
5 c = st (Ar + (p]) = er + 21.).

Essentially , with Regev encryption ,
the decryption invariant if

sTc =

M
. Ll + error

Suppose however that instead of encrypting ,
we encrypted the entries of

M
. ST instead

. And also ignore the scaling factor.
nXn

Then
,

the ciphertext would be a matrix CELg where

sTC =

M
. s + error - ~ STA = eT

L

↑
cecifically : C = AR + M . In -> sTC = STAR + M

. sT
S/

where R 50 , 13mm = R +

j
. S

error

Observe : Suppose C
, was a Reger encryption of M .. ST and Cz was Regev encryption of M2

. St. Then :

st( , ( = (Mist + et)(z =

M , (M2 s + e2) + e!C

=

NIM2 - st + e2 + e!CM,



This is basically an encryption of M,M2
with new error term M, + e C2.

A ↑
big because C2 is a Regev ciphertext

small since
Chas large entries over

* )
M,

E 50,, 3 and es is small

Due to the large noise
, cannot recover the message anymoree...

Need a way
to avoid multiplying by something large,

- How to make something small ? Binary decomposition !

Approach: instead of encrypting M
. ST

, we will encrypt MiSTG instead.

Invariant : C is an encryption of po if

ST C = . StG E E
We can constructI as

C = AR + MG Em
Then C = STAR + M

. St G = eTR + M
. STO

Suppose we have two ciphertexts C , and C2 where

sTC,
=

M, . ST G + e,!

st (2 = M2
. st G + es

Then + Cz is an encryption of Mitplz
:

st(( + (2) = (M ,
+ Mz) . stG + e,↑ + e [erros add]

To multiply ,
we compute C , G"(C2) :

5↳G"((z) = (p .. s
+ G + e

,

)G
+ (c)

=

M.. s
+ (2 + e,!G (c)

=

M , M2 s
+ G +

M ,
ez + e, G+ ((z)

--

small since ,
ez + e!G"(22) is also small

To decrypt a ciphertext C
, can compute stC. G"((1 . un) where un=t since sun = 1

.

As long as total error is less than
, decryption recovers message.

This gives the Gentry-Sahai-Waters encryption scheme.

(n-1) xm
-

Setup (1) : Sample A #
g -> plc = A = [s A + eT]

(sTA = CT)
K - I

-

S <
-

"g
sk = s =[-5/1]

e + y
m

-

Encrypt (A , M) : R So,1
*

C = AR + m
. G t 7

*

-

Decrypt (s , C) :

compute STCG)
· In) and round as usual

Security is same argument as for Reger encryption
!

Namely, by LWE
,

the public key is indistinguishable from a uniformly om matrix A
* m

by LHL
,

(A
,

AR) is indistinguishable from(A, U) where U m

=> n+ ↑G perfectly hides M .



Let's look at noise growth. Suppose C = AR
.

+

M .
G

C2 : AR2 + M2G
Then sTC

,
= STAR +

M.
ST G =

Mi + ST G + eTR ,

NL
noise in the ciphertext : must be small relative to g in order to decrypt

Noise increases with each operation
:

C + (2 = A (R ,
+ R2) + (,

+M2) 6 ->
new noise is RIR2

C
, G"((z) = AR

,
G"(C2) + M , C2

= A (R ,G(2) + M , Rz) +
M , M2G it

new noise is R
, G"(C2) + . R2

norm is bounded by Rilla'm + /Rella when M,
E 20, 13.

After computinga repeated squarings : noise is mold)
.

Will eventually overwhelm g .
Thus

,
there is a bound on number of homomorphic

operations the scheme supports.

Fully homomorphic encryption
:

support arbitrary number of computations .

FromSWHE to THE
.

The above construction requires imposing an a priori bound on the multiplicative depth of the computation.

To obtain fully homomorphic encryption ,
we apply Gentry's brilliant insight of bootstrapping.

High-levelidea . Suppose we have SWHE with following properties
:

1 . We can evaluate functions with multiplicative depth &

2. The decryption function can be implemented by a circuit with multiplicative depth d'cd

Then
, we can build an FHE scheme as follows :

- Public key of FHE scheme is public key of SWHE scheme and an encryption of the SWHE decryption key under the

SWHE public key
- We now describe a ciphertext - refreshing procedure:

- For each SWHE ciphertext, we can associate a "noise" level that keeps track of how
many more homomorphic operations

can be performed on the ciphertext (while maintaining correctness).
↳ for instance

,
we can evaluate depth-d circuits on fresh ciphertexts ; after evaluating a single multiplication,

we

can only evaluate circuits of depth-(d-1) and so o n ...

- The refresh procedure takes any valid ciphertext and produces one that supports depth (d-d') homomorphism ;
since d > d

,
this enables unbounded (i .e., arbitrary) computations on ciphertexts

Idea: Suppose we have a ciphertextct where Decrypt (sk
,
ct) = X

.

To refresh the ciphertext ,
we define the Boolean circuit Cc+: 50

,
131088 + 30 , 1) where (c+ (sk) : = Decrypt (sk , ct)

and homomorphically evaluateOct on the encryption of sk

↳ Encrypt(pk ,
sk) - Encrypt(pk , Cc+ (sk))

M& ↓& refreshed ciphertext still
fresh ciphertext that homomorphic evaluation

supports dod'levels of multiplication
supportsa levels consumes d'levels

Security now requires that the public key includes a copy of the decryption key
2) /I↳ Requires making a circular security assumption

Oenquestion
: THE without circular security from LWE (possible from iO)

Can be shown that GSW is bootstrappable. [Decryption operation is linear
,

followed by rounding
-

can be implemented with low-depth circuit I


