
Focus : lattice-based cryptography
-

Conjectured post-quantum resilience

- Number-theoretic assumptions like discrete log and factoring are insecure against quantum computers
~ Basis of

many NIST post-quarture cryptography standards for post-quantum key agreement and digital
signatures

-

Security based on worst-case hardness

~

Cryptography has typically relied on average-case hardness li
.
e

.,
there exists some bution of hard instances)

- Lattice-based cryptography can be based on case hardness (there does not exist an algorithm that solves

all instances)
-

- Enables advanced cryptographic capabilities

Refinition : An n-dimensionallatticeLEARNis
a discreteadditivesubspaceof

To
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Examples : T In-dimensional integer-valued vectors)

gTP (n-dimensional integere valued rectors where each coordinate is multiple of g) "g-ary" lattice

Lattices typically contain infinitely -

many points, but arely-generated by taking itger linear combinations of

a small number of basis rectors :

B = [b , 1 b21 ... (bK] E T
*K

(vectors are linearly independent over TR)
& K is the rank of the lattice

2 (B) = 4 Steny Ribi /di + 1) (full-rank : k = n)

= B . R
K

A lattice can have
many basis :
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standard basis for 3 choice of basis makes a big difference in hardness of lattice problems
alternative basis for &

2

↳ often: bad basis is public key-

good basis is trapdoor



Definition. Let2 be an n-dimensional lattice. Then
,

the minimum distance X,(2) is the norm of the

shortest non-zero vector in 2 :

x
, (2) = min E dog

/VI

The ithsecessiveminimum Xi(f) is the smallest rETR such that I containsi tindependenti

Computational problems on lattices : (problems parameterized by lattice dimension

= 2 case is easy
(can solve exactly using Gauss' algorithm)

- Shortest vector problem (SVP) : Given a basis B of an n-dimensional lattice 2 = <(B)
,

find UE I such that

((v() = x , (2)
·

Approximate SVP (SVPy) : Given a basis B of an n-dimensional lattice 2 =<(B)
,

find UtL such that (ul) < U -
,(E)

-

Decisional approximate SVP /GapSVPy) : Given a basis B of an n-dimensional lattice 2 = <(B) ,
decide if

x (2) < 1 or if x, (2) = V

example language in NPR CoAM is graph isomorphism

Complexity of GapSVP depends on approximation factor U : - (not known to be)
L in coNP
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NP-hard
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quasi-NP-hard
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↓ Toge in O(n) &
n loglogn/logn

-->

under randomized reductions
&

"nearly polynomial" approximation factor sufficient

L mapping NO instances to NO instances w. p . 1 I for cryptographyle.g, OWF/PKE exists)
and YES instances to YES instances w . p . 2/3

unlikely to allow basing crypto on NP

hardness since for approximation factors

bigger than J5 , CapSUPy E NP e CoNP

AlgorithmsforEP : Lenstra-Lenstra-Lousaz (2) algorithm (lattice reduction)

-polynomialtimealgorithm forU
= Gogloge/log approximione

(many need similar space as well)
· Can trade-off time for approximation factor : solve GapSUPy in time 2

O(U/log2)
- Same asymptotics with quantum algorithms

Main problems we use for cryptography are short integer solutions (SIS) and learning with errors (LWE)
↳> These reduce to GapSUP and SIVPy
↳

Currently open
: basing crypto on search-SVP (SVP or SVPU)



ShortInteger Solutions (SIS) : The SIS problem is defined with respect to lattice parameters m
, m , q and a norm bound p.

The SISnmig, p

problem says that for As Txm, no efficient adversary can find a non-zero rector XETM where

Ax = Oe "and IBIg
In lattice-based cryptography, the lattice dimensiona will be the primary security parameter .

Notes: -The norm bound i
should satisfy p < g. Otherwise

,
a trivial solution is to set X = (g,

0
,
0, ...,

o!
-

We need to choose m
, B to be large enough so that a solution does exist.

↳> When m = S(nlogg) and <Im a solution always exists. In particular,
when m2 Tnlogg7 ,

there always exists

↓ E 4-1 ,
0

,
13m such that Ax = 0 :

-

There are <M < jnlogg =

g
*

Vectors
y

E 40 , 13M & By a counting argument ,
there exist

-

Since Ay E Ig" ,
there are at most g possible outputs of Ay y,

# Y2
E 40 ,

13" such that Ay,
= Ay

~ Thus
,
if we set x =

y,
-

y2 E 3 - 1
,
0

, 134
,

then Ax = Aly,yz) = Ay, -Agz = 0 E En and ly ,-yall In

SIS can be viewed as an e-case SVP on a lattice defined by AE Kym :

2 (A) = [xE M
: Ax = 0 (modg)]

↑
↑ in coding-theoretic terms

,
the matrix A is a "parity-check" matrix

called a "g-ary" lattice

since gl
*

= <
+
(A)

SIS problem is essentially finding short vectors in the lattice L(A) where A
xm

3Theorem. For any m = poly(n) , any I
> O

,
and sufficiently large gl B

· poly(n) ,
there is a probabilistic polynomial time (PPT)

reduction from solving GapSUPy or SIVPy in the worst case to solving SISnmg, p
with non-negligible probability,

where U = B poly (n).

We can use SIS to directly obtain a cision-resistanthash function (CRHF).

Refinition. A keyed hash family H : K XX-> Y is collision-resistant if the following properties hold :

--·Compressings/y) IX all efficient adversaries o

Pr[k < R ; (
, x') = A (14

,
k) : H(k,

x) = H(k ,
x) and x + x'] = negl(7) .



We can directly appeal to SIS to obtain a CRHF : H : TRM x [0, 1]* -> E where we set m < Tnlogg7 ·

In this case ,
domain has size 2" > Thlogs = g" ,

which is the size of the output space. Collision-resistance follows assuming SISn
, m , g, p

-

for
any p < /nlogg)

The SIS hash function supports efficient local updates :

Suppose you
have a public hash h = H(X) of a bit-string XE 40 ,

13". Later
, you want to update x L> x' where x and X' only

differ on a few indices (e.g, updating an entry in an address book). For instance
, suppose x and X' differ only on the first bit

le.g.,
X

,
= 0 and Xi = 1). Then observe the following

h = H(k ,
x) = A . x

= (ak ... am) (ii) =*Xia; =&Xia ; sinceis

h' = H(k,
X) = A . x'

=&Xia :
= Xia ,

+ Xai = a t Xiai = a
,
th since Xi = Xi for alihe

Thus
,

we can easily update h to h' by just adding to it the first column of A without (recomputing the Al hash function.

The SIS hash function is universal - this will be a very useful property (in conjunction with the leftover hash lemmal

Definition. Let H : K < X -> y be a keyed hash function. We say I is universal if for all Xo
,
X

,
EX where

Xo + x
.,
Pr[k & K : H(k ,xo) : H(k

,
x ,)] = '/3)

.

temma.TheSIShashfunctionH
: EgrmGogmtK is Universal)

,
then Alxo-X) = 0. Let as ... Am Eke e

columns of A. Then,

A (Xo-X1) =,Enga : (Xoi - Xi
,
i) Note: When q

is
prime,

this

argument also extends to

Since there exists some jt[m) where Xoj # *
,j ,

the above relation holds only if any domain that is subset

-G-1
, 13 of16

. Namely
aj

= (
,j

- Xoj) .& Gi (Ko,
i -Kihe H : <xm + Eng - &

-

independent of aj is universal ,

Thus
, Pr[Ac***: A (Xo -x) = 0]

= Pria ,, .... am
* Eg :

aj
= (X

,i Xo,i)Sai Coi 4
,i e

-

=+
gr



Refinition. Let X be a random variable taking on values in a finite set S
.

We define the guessing probability of X to be

max Pr[X-=

We define the min-entropy of X to be

Ho (X) = -log Max Pr[X=

-K

Intuitively : if a random variable has k bits of min-entropy ,
then its most likely outcome occurs with probability at most 2

-

(i.e
,

there exists at least 2" possible values for X)

Definition. Let Do
,
D

, be distributions with a common support S. Then
,

the statistical distance between D, and D2 is defined to be

A (Do
, Di) = & /Pr[t+Do : t = S] - Pr[tzD,: t = s])

SES

If Do and D
,

are E-close
,

then no adversary can distinguish with advantage better thanE

↳ Whena is negligible ,
we say the two distributions are stisticallyindistinguishable denoted Do Di

↳ Contrast with computational indistinguishability which says no efficient adversary can distinguish denoted Do = DI

ThoreneftoverHash Lemma). Let H : KxX-y be an universal hash function. Suppose xEX is a random

variable with t bits of min-entropy. Then
,

define the following too distributions :

Do : k R
, y

< H(k
,
x) ; output (k

, y)
D : I K

, y * Y ; output (k
,y)

The statistical distance between Do and D
,

is at most

0 (Do, D1) 4 + F2t

t - 2x

Typical setting
:H is universal and 141 = 2. By LHL

,
(k ,

H(k,X) = (k
, y) where y Y

.

This is an example of a "randomness extractor
.

"

↓HL shows that universal hash

We have a source (x) with min-entropy ,
but not necessarily uniform. 3 functions can "smooth" out a

We want to extract from it a uniform random value non-uniform distribution-

Incurs loss of 27 bits of entropy

Common application : extracting uniformly random cryptographic keys from non-uniform source

↳ consider H : E
**

+10, 13 -> T Not typically used in practice because we need

H(A ,
X) : = N

&

distribution with at least n +27 bits of- x ↑ ↑ &
--

could be binary
suitable for use min-entropy (384 bits if n = x = 128)

presentation of
as a symmetric key Practical heuristic : use random oracle

rel
a group element

- does not have to be uniform - just needs min-entropy of typically,
we just take o to be

I

M

In lattices: If A**M and v * 90 , 13
,

then AVE Eg is uniform when m > mlog g + 24 the security parameter and
set m = G(nlogg)

By a hybrid argument ,
if we sample R* 40,13kXM

,
then AR is statistically close to uniform over 77xm

We will see this used in many constructions



Commitments from SIS (recall : commitment is a "sealed envelope)
-

Setup (14)
->

crs : Samples a common reference string 3 Here, opening can simply be the pair (m
,
r)

- Commit (crs
, M ; r) -> o : Commits to a message M with randomness Verifier checks that o : Commit (crs

,
m ; r)

Useful building block for zero-knowledge proofs and other cryptographic protocols
-

Setup (1) : Let n
, q be lattice parameters ,

and m = O(nlogg)
Sample A

, Az i ***. Output crs = (A
, Az

- Commit (crs
, M ; r) : Output 8 = A

,
m + Azr where crs = (A, ,

Az
R

M,
~ E 20 ,13 = [A , 1 Az] [F] = Eg compressing when m < nlogg

3. If m < 3nlogg ,
then scheme is statistically hiding.Theorem (Statistically Hiding

Proof . By the LHL
,

for ↓ 40 ,134, Azr Uniform (1). Thus
, Azr acts as a one-time pad for A. m.

Theoremcomputational Hiding). Under SISn
, 2m , g , Sm ,

the commitment scheme is computationally binding.
Proof. Suppose A can break the binding property. We use A to construct SIS adversary B :

Algorithm B SISn
,zm

, g , Em Challenger

<
[A . /Az] [A, (A2)**

2m

Algorithm A

<= (A , Az)
M

GtTg
#, M2 r

, 22 E4o,

-

-> [MiM2] -> 4 - 1
,

0
,
13

If A is successful
,

then M , FM2 and [A
, / A2) [i] = 0 = [A , /A2] [ N2)

,
which means [A , 1 An] [M) = 0.

Since M . Ep this is a non-zero SIS solution with norm at most tim.

Compare this with Pedersen commitments from discrete log :

Setup (1* ) : Take a prime-order group 4 = GroupGen (1). Let
p

be the order of 6.

Sample g,
h &. Output crs = (g ,

h)

Commit (crs, m ; 2) : Output gM y
-

M,re

discrete log SIS
nxm

A
,
Azg,

hG
&

Eg
M >

gr
A

, p
Az

We will see many similar parallels between discrete log based systems and lattice-based systems


