CS 388H: Cryptography

Number Theory and Algebra Fact Sheet

Instructor: David Wu

Groups

- A group (\mathbb{G}, \star) consists of a group \mathbb{G} together with an operation \star with the following properties:
 - Closure: If $q, h \in \mathbb{G}$, then $q \star h \in \mathbb{G}$.
 - Associativity: For all $q, h, k \in \mathbb{G}$, $q \star (h \star k) = (q \star h) \star k$.
 - **Identity:** There exists an (unique) element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$, $e \star g = g = g \star e$.
 - **Inverse:** For every element $g \in \mathbb{G}$, there exists an (unique) element $h \in \mathbb{G}$ where $g \star h = e = h \star g$.
- A group (\mathbb{G}, \star) is **commutative** (or *abelian*) if for all $g, h \in \mathbb{G}$, $g \star h = h \star g$.
- **Notation:** Unless otherwise noted, we will denote the group operation by '·' (i.e., multiplicative notation). If $g, h \in \mathbb{G}$, we write gh to denote $g \cdot h$. For a group element $g \in \mathbb{G}$, we write g^{-1} to denote the inverse of g. We write g^0 and 1 to denote the identity element. For a positive integer k, we write g^k to denote

$$g^k := \underbrace{g \cdot g \cdots g}_{k \text{ copies}}.$$

For a negative integer k, we write q^{-k} to denote $(q^k)^{-1}$.

- A group $\mathbb G$ is *cyclic* if there exists a *generator g* such that $\mathbb G = \{g^0,\dots,g^{|\mathbb G|-1}\}.$
- For an element $g \in \mathbb{G}$, we write $\langle g \rangle := \{g^0, g^1, \dots, g^{|\mathbb{G}|} 1\}$ to denote the *subgroup generated by g*. The *order* ord(g) of g in \mathbb{G} is the size of the subgroup generated by g: ord $(g) := |\langle g \rangle|$. The order of the group \mathbb{G} is the size of the group: ord $(\mathbb{G}) = |\mathbb{G}|$.
- Lagrange's theorem: For a group \mathbb{G} and any element $g \in \mathbb{G}$, the order of g divides the order of the group: $\operatorname{ord}(g) \mid |\mathbb{G}|$.
- If \mathbb{G} is a group of prime order, then $\mathbb{G} = \langle g \rangle$ for every $g \neq 1$ (i.e., every non-identity element of a prime-order group is a generator).

The Groups \mathbb{Z}_n and \mathbb{Z}_n^*

- We write \mathbb{Z}_n to denote the group of integers $\mathbb{Z}_n := \{0, 1, \dots n-1\}$ under addition modulo n.
- We write \mathbb{Z}_n^* to denote the group of integers $\mathbb{Z}_n^* := \{x \in \mathbb{Z}_n : (\exists y \in \mathbb{Z}_n : xy = 1 \bmod n)\}$ under multiplication modulo n.
- **Bezout's identity:** For all integers $x, y \in \mathbb{Z}$, there exists integers $s, t \in \mathbb{Z}$ such that $xs + yt = \gcd(x, y)$.
 - Given x, y, computing s, t can be computed in time $O(\log |x| \cdot \log |y|)$ using the *extended Euclidean algorithm*.

- An element $x \in \mathbb{Z}_n$ is invertible if and only if gcd(x, n) = 1. This gives an equivalent characterization of \mathbb{Z}_n^* : $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n : gcd(x, n) = 1\}$. Computing an inverse of $x \in \mathbb{Z}_n^*$ can be done efficiently via the extended Euclidean algorithm.
- For prime p, the group $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$. The order of \mathbb{Z}_p^* is $\left|\mathbb{Z}_p^*\right| = p-1$. In particular \mathbb{Z}_p^* is not a group of prime order (whenever p > 3). Computing the order of an element $g \in \mathbb{Z}_p^*$ is efficient if the factorization of the group order (i.e., p-1) is known.
- For a positive integer n, Euler's phi function (also called Euler's totient function) is defined to be the number of integers $1 \le x \le n$ where $\gcd(x,n) = 1$. In particular, $\varphi(n)$ is the order of \mathbb{Z}_n^* . If $p_1^{k_1} p_2^{k_2} \cdots p_\ell^{k_\ell}$ is the prime factorization of n, then

$$\varphi(n) = n \cdot \prod_{i \in [\ell]} \left(1 - \frac{1}{p_i} \right) = \prod_{i \in [\ell]} p_i^{k_i - 1} (p_i - 1).$$

- Special cases of Lagrange's theorem:
 - **Fermat's theorem:** For prime p and $x \in \mathbb{Z}_p^*$, $x^{p-1} = 1 \pmod{p}$.
 - **Euler's theorem:** For a positive integer n and $x \in \mathbb{Z}_n^*$, $x^{\varphi(n)} = 1 \pmod{n}$.

Operations over Groups

- Let n be a positive integer. Take any $x, y \in \mathbb{Z}_n$. The following operations can be performed efficiently (i.e., in time poly(log n)):
 - Sampling a random element $r \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_n$.
 - Basic arithmetic operations: $x + y \pmod{n}, x y \pmod{n}, xy \pmod{n}, x^{-1} \pmod{n}$. These operations suffice to solve linear systems.
 - Exponentiation: Computing $x^k \pmod n$ can be done in poly(log n, log k) time using repeated squaring.
- Suppose N = pq where p, q are two large primes. Let $x \in \mathbb{Z}_n$. Then, the following problems are believed to be hard:
 - Finding the prime factors of N. This is equivalent to the problem of computing $\varphi(N)$.
 - Computing an e^{th} root of x where gcd(N, e) = 1 (i.e., a value y such that $x^e = y \mod N$).
- Let \mathbb{G} be a group of prime order p with generator g. We often consider the following computational problems over \mathbb{G} :
 - **Discrete logarithm:** Given (g, h) where $h = g^x$ and $x \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_p$, compute x.
 - Computational Diffie-Hellman (CDH): Given (g, g^x, g^y) where $x, y \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_p$, compute g^{xy} .
 - **Decisional Diffie-Hellman (DDH):** Distinguish between (g, g^x, g^y, g^{xy}) and (g, g^x, g^y, g^r) where $x, y, r \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_p$.