CS 388H: Cryptography

Cryptographic Definitions

Instructor: David Wu

In this note, we will recall the main definitions of the cryptographic notions encountered in this course.

1 Cryptographic Building Blocks

Pseudorandom generators (PRGs). Let $G: \{0, 1\}^{\lambda} \to \{0, 1\}^n$ be an efficiently-computable function where $n > \lambda$. We define the following PRG security experiments:

Experiment b = 0:

- 1. The challenger samples $s \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^{\lambda}$ and sends $t \leftarrow G(s)$ to \mathcal{A} .
- 2. The adversary \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

Experiment b = 1:

- 1. The challenger samples $t \stackrel{\mathbb{R}}{\leftarrow} \{0,1\}^n$ and gives t to \mathcal{A} .
- 2. The adversary \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

We say G is a secure PRG if for all efficient adversaries \mathcal{A} ,

$$PRGAdv[\mathcal{A}] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = negl(\lambda).$$

Pseudorandom functions (PRFs). Let $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ be an efficiently-computable function with a key space \mathcal{K} , domain \mathcal{X} , and range \mathcal{Y} (technically, each of these sets is a function of the security parameter λ). We now define the following PRF security experiments:

Experiment b = 0:

- 1. The challenger samples $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now adaptively make queries to the challenger.
 In each query, the adversary chooses an input x ∈ X, and the challenger replies with F(k, x).
- 3. The adversary outputs a bit $b' \in \{0, 1\}$.

Experiment b = 1:

- 1. The challenger samples a function $f \stackrel{\mathbb{R}}{\leftarrow} \text{Funs}[\mathcal{X}, \mathcal{Y}]$.
- The adversary can now adaptively make queries to the challenger.
 In each query, the adversary chooses an input x ∈ X, and the challenger replies with f(x).
- 3. The adversary outputs a bit $b' \in \{0, 1\}$.

We say that F is a secure PRF if for all efficient adversaries \mathcal{A} ,

$$PRFAdv[\mathcal{A}] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = negl(\lambda).$$

In the above definition, Funs $[X, \mathcal{Y}]$ denotes the set of *all* functions $f: X \to \mathcal{Y}$.

Pseudorandom permutations (PRPs). Let $F: \mathcal{K} \times \mathcal{X} \to \mathcal{X}$ be an efficiently-computable function with a key space \mathcal{K} and domain \mathcal{X} (technically, each of these sets is a function of the security parameter λ). We say that F is a pseudorandom permutation (PRP) if the following properties hold:

- For every key $k \in \mathcal{K}$, the function $F(k, \cdot)$ is a permutation on X.
- There exists an efficiently-computable function $F^{-1}: \mathcal{K} \times \mathcal{X} \to \mathcal{X}$ such that for all $k \in \mathcal{K}$ and all $x \in \mathcal{X}$,

$$F^{-1}(k, F(k, x)) = x.$$

For security, we define the following PRP security experiments:

Experiment b = 0:

- 1. The challenger samples $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- 2. The adversary can now adaptively make queries to the challenger. In each query, the adversary chooses an input $x \in X$, and the challenger replies with F(k, x).
- 3. The adversary outputs a bit $b' \in \{0, 1\}$.

Experiment b = 1:

- 1. The challenger samples a function $f \stackrel{\mathbb{R}}{\leftarrow} \text{Perm}[X]$.
- The adversary can now adaptively make queries to the challenger.
 In each query, the adversary chooses an input x ∈ X, and the challenger replies with f(x).
- 3. The adversary outputs a bit $b' \in \{0, 1\}$.

We say that F is a secure PRP if for all efficient adversaries \mathcal{A} ,

$$PRPAdv[\mathcal{A}] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = negl(\lambda).$$

In the above definition, Perm[X] denotes the set of *all* permutations $f: X \to X$.

Collision-resistant hash functions (CRHFs). Let $H: \{0,1\}^n \to \{0,1\}^m$ where m < n (for full formality, the hash function would be indexed by a security parameter λ and n, m are polynomials in λ). We say that H is a collision-resistant hash function if for all efficient (uniform) adversaries \mathcal{A} (that takes the security parameter λ as input),

$$\mathsf{CRHFAdv}[\mathcal{A}] = \mathsf{Pr}[(x, y) \leftarrow \mathcal{A} : H(x) = H(y) \text{ and } x \neq y] = \mathsf{negl}(\lambda).$$

2 Symmetric Encryption

A symmetric encryption scheme (also called a cipher) is defined over a key space \mathcal{K} , a message space \mathcal{M} , and a ciphertext space C (technically, each of these sets is a function of the security parameter λ) and consists of two efficient algorithms:

- Encrypt $(k, m) \to \text{ct}$: On input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$, the encryption algorithm outputs a ciphertext ct.
- Decrypt $(k, \operatorname{ct}) \to m/\bot$: On input a key $k \in \mathcal{K}$ and a ciphertext $\operatorname{ct} \in C$, the decryption algorithm either outputs a message $m \in \mathcal{M}$ or a special symbol \bot (to indicate a decryption failure).

Correctness. The encryption scheme is correct if for all keys $k \in \mathcal{K}$ and all messages $m \in \mathcal{M}$,

$$Pr[Decrypt(k, Encrypt(k, m)) = m] = 1.$$

Perfect secrecy. The encryption scheme satisfies perfect secrecy if for all pairs of messages $m_0, m_1 \in \mathcal{M}$ and all ciphertext $ct \in C$,

$$\Pr[k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K} : \mathsf{Encrypt}(k, m_0) = c] = \Pr[k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K} : \mathsf{Encrypt}(k, m_1) = c].$$

Semantic security. We start by defining the semantic security experiment:

Experiment b = 0:

- 1. The challenger samples a key $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- 2. The adversary \mathcal{A} sends messages $m_0, m_1 \in \mathcal{M}$ to the challenger.
- 3. The challenger replies with $Encrypt(k, m_0)$.
- 4. The adversary \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

Experiment b = 1:

- 1. The challenger samples a key $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- 2. The adversary \mathcal{A} sends messages $m_0, m_1 \in \mathcal{M}$ to the challenger.
- 3. The challenger replies with $Encrypt(k, m_1)$.
- 4. The adversary \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

We say the encryption scheme satisfies semantic security if for all efficient adversaries \mathcal{A} ,

$$SSAdv[\mathcal{A}] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = negl(\lambda).$$

Note that when the message space \mathcal{M} contains *variable-length* messages, then each of the adversary's encryption queries (m_0, m_1) in the semantic security experiment must additionally satisfy $|m_0| = |m_1|$.

Security against chosen-plaintext attacks (CPA-security). We start by defining the CPA-security experiment:

Experiment b = 0:

- The challenger samples a key $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make queries to the challenger:
 - Encryption query: The adversary sends $m_0, m_1 \in \mathcal{M}$ to the challenger. The challenger replies with $\mathsf{Encrypt}(k, m_0)$.
- The adversary \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

Experiment b = 1:

- The challenger samples a key $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make queries to the challenger:
- Encryption query: The adversary sends $m_0, m_1 \in \mathcal{M}$ to the challenger. The challenger replies with $\mathsf{Encrypt}(k, m_1)$.
- The adversary \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

We say the encryption scheme satisfies security against chosen-plaintext attacks (CPA-security) if for all efficient adversaries \mathcal{A} ,

$$CPAAdv[\mathcal{A}] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = negl(\lambda).$$

Note that when the message space \mathcal{M} contains *variable-length* messages, then each of the adversary's encryption queries (m_0, m_1) in the CPA-security experiment must additionally satisfy $|m_0| = |m_1|$.

Security against chosen-ciphertext attacks (CCA-security). We start by defining the CCA-security experiment:

Experiment b = 0:

- The challenger samples a key $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make queries to the challenger:
 - **Encryption query:** The adversary sends $m_0, m_1 \in \mathcal{M}$ to the challenger. The challenger replies with $\mathsf{Encrypt}(k, m_0)$.
 - Decryption query: The adversary sends a ciphertext ct ∈ C to the challenger. The challenger replies with Decrypt(k, ct).
- The adversary \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

Experiment b = 1:

- The challenger samples a key $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make queries to the challenger:
 - **Encryption query:** The adversary sends $m_0, m_1 \in \mathcal{M}$ to the challenger. The challenger replies with $\mathsf{Encrypt}(k, m_1)$.
 - − **Decryption query:** The adversary sends a ciphertext $ct \in C$ to the challenger. The challenger replies with Decrypt(k, ct).
- The adversary \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

We say an adversary \mathcal{A} is admissible for the CCA-security game if it does not issue a decryption query on a ciphertext ct it *previously* received from the challenger (in response to an encryption query). We say the encryption scheme satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient and admissible adversaries \mathcal{A} ,

$$CCAAdv[\mathcal{A}] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = negl(\lambda).$$

Note that when the message space \mathcal{M} contains *variable-length* messages, then each of the adversary's encryption queries (m_0, m_1) in the CCA-security experiment must additionally satisfy $|m_0| = |m_1|$.

Ciphertext integrity. We start by defining the ciphertext integrity experiment:

Ciphertext integrity experiment:

- The challenger samples a key $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make encryption queries to the challenger:
 - Encryption query: The adversary sends m ∈ M to the challenger. The challenger replies with ct ← Encrypt(k, m).
- The adversary \mathcal{A} outputs a ciphertext $ct^* \in C$.

Let $ct_1, \ldots, ct_Q \in C$ be the ciphertexts that the challenger gives the adversary in the security game (when responding to encryption queries). We say an adversary \mathcal{A} is admissible for the existential unforgeability game if $ct^* \notin \{ct_1, \ldots, ct_Q\}$. We say that the encryption scheme satisfies ciphertext integrity if for all efficient and admissible adversaries \mathcal{A} ,

$$Pr[Decrypt(k, ct^*) \neq \bot] = negl(\lambda).$$

Authenticated encryption. We say the encryption scheme is an authenticated encryption if it satisfies CPA-security *and* ciphertext integrity.

3 Message Authentication Codes

A message authentication code (MAC) is defined over a key space \mathcal{K} , a message space \mathcal{M} , and a tag space \mathcal{T} (technically, each of these sets is a function of the security parameter λ) and consists of two efficient algorithms:

- Sign $(k, m) \to t$: On input a key $k \in \mathcal{K}$ and a message $m \in \mathcal{M}$, the signing algorithm outputs a tag t.
- Verify $(k, m, t) \to 0/1$: On input a key $k \in \mathcal{K}$, a message $m \in \mathcal{M}$, and a tag $t \in \mathcal{T}$, the verification algorithm outputs a bit $b \in \{0, 1\}$ (indicating whether the tag is valid or not).

Correctness. The MAC is correct if for all keys $k \in \mathcal{K}$ and all messages $m \in \mathcal{M}$,

$$Pr[Verify(k, m, Sign(k, m)) = 1] = 1.$$

Existential unforgeability. We start by defining the existential unforgeability experiment:

${\bf Existential\ unforgeability\ experiment:}$

- The challenger samples a key $k \stackrel{\mathbb{R}}{\leftarrow} \mathcal{K}$.
- The adversary can now make signing queries to the challenger:
 - **Signing query:** The adversary sends $m \in M$ to the challenger. The challenger replies with $t \leftarrow \text{Sign}(k, m)$.
- The adversary \mathcal{A} outputs a message $m^* \in \mathcal{M}$ and tag $t^* \in \mathcal{T}$.

Let $m_1, \ldots, m_Q \in \mathcal{M}$ be the signing queries the adversary makes and let $t_1, \ldots, t_Q \in \mathcal{T}$ be the respective tags that the challenger responds with. We say an adversary \mathcal{A} is admissible for the existential unforgeability game if $(m^*, t^*) \notin \{(m_1, t_1), \ldots, (m_Q, t_Q)\}$. We say the MAC satisfies existential unforgeability against chosen-message attacks if for all efficient and admissible adversaries \mathcal{A} ,

$$\Pr[\text{Verify}(k, m^*, t^*) = 1] = \operatorname{negl}(\lambda).$$

4 Block Cipher Modes of Operation

We now recall two common ways to use block ciphers to construct CPA-secure encryption schemes.

Counter mode. Let $F: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a secure PRF. In the following, k is the PRF key and $m = (m_1, \ldots, m_n)$ are the blocks of the message (i.e., $m_i \in \{0,1\}^n$). In randomized counter-mode encryption, sample $\mathsf{IV} \overset{\mathbb{R}}{\leftarrow} \{0,1\}^n$, and the ciphertext is $(\mathsf{IV}, c_1, \ldots, c_n)$. We view IV as an integer between 0 and $2^n - 1$, and perform arithmetic operations modulo 2^n .

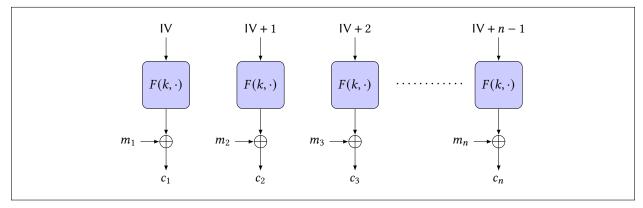


Figure 1: Counter-mode encryption

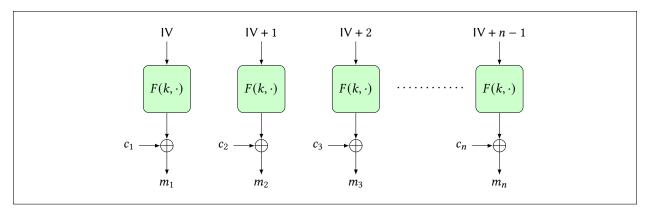


Figure 2: Counter-mode decryption

Cipherblock chaining (CBC). Let $F: \mathcal{K} \times \{0, 1\}^n \to \{0, 1\}^n$ be a block cipher (i.e., a secure PRP). In the following, k is the PRP key and $m = (m_1, \dots, m_n)$ are the blocks of the message (i.e., $m_i \in \{0, 1\}^n$). In CBC encryption, sample $\mathbb{IV} \stackrel{\mathbb{R}}{\leftarrow} \{0, 1\}^n$, and the ciphertext is $(\mathbb{IV}, c_1, \dots, c_n)$.

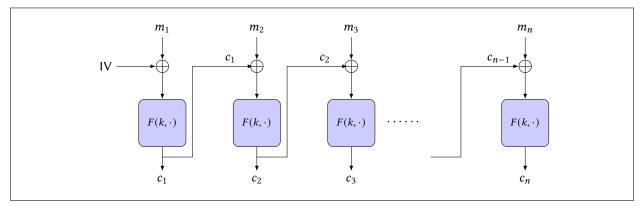


Figure 3: CBC encryption

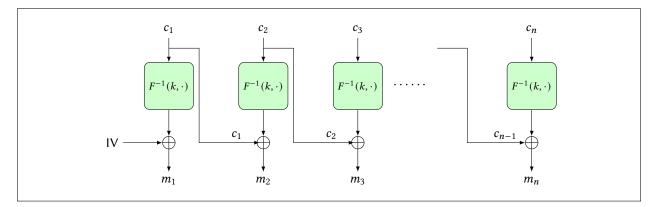


Figure 4: CBC decryption

5 Public-Key Encryption

A public-key encryption scheme is define with respect to a message space \mathcal{M} and a ciphertext space \mathcal{C} (technically, each of these sets can be a function of the security parameter λ) and consists of three algorithms:

- Setup \rightarrow (pk, sk): The setup algorithm outputs a public key pk and a secret key sk. (Technically, this algorithm takes the security parameter λ as input).
- Encrypt(pk, m) \rightarrow ct: On input the public key pk and a message $m \in \mathcal{M}$, the encryption algorithm outputs a ciphertext ct.
- Decrypt(sk, ct) → m: On input a secret key sk and a ciphertext ct, the decryption algorithm either outputs a
 message m ∈ M or a special symbol ⊥ (to indicate a decryption failure).

Correctness. A public-key encryption scheme is correct if for all (pk, sk) output by Setup and all messages $m \in \mathcal{M}$,

$$Pr[Decrypt(sk, Encrypt(pk, m)) = m] = 1.$$

Semantic security. The semantic security experiment is defined analogously to the corresponding notion in the secret-key setting:

Experiment b = 0:

- 1. The challenger samples $(pk, sk) \leftarrow Setup$ and gives pk to \mathcal{A} .
- 2. The adversary \mathcal{A} sends messages $m_0, m_1 \in \mathcal{M}$ to the challenger.
- 3. The challenger replies with Encrypt(pk, m_0).
- 4. The adversary $\mathcal A$ outputs a bit $b' \in \{0, 1\}$.

Experiment b = 1:

- 1. The challenger samples $(pk, sk) \leftarrow Setup$ and gives pk to \mathcal{A} .
- 2. The adversary \mathcal{A} sends messages $m_0, m_1 \in \mathcal{M}$ to the challenger.
- 3. The challenger replies with Encrypt (pk, m_1).
- 4. The adversary \mathcal{A} outputs a bit $b' \in \{0, 1\}$.

We say the encryption scheme satisfies semantic security if for all efficient adversaries \mathcal{A} ,

$$SSAdv[\mathcal{A}] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = negl(\lambda).$$

CCA security. We start by defining the CCA-security experiment for public-key encryption. This is the analog of the corresponding secret-key notion.

Experiment b = 0:

- The challenger samples (pk, sk) \leftarrow Setup and gives pk to \mathcal{A} .
- The adversary can now issue decryption queries to the challenger:
 - Decryption query: The adversary sends a ciphertext ct ∈ C to the challenger. The challenger replies with Decrypt(sk, ct).
- The adversary \mathcal{A} sends messages $m_0, m_1 \in \mathcal{M}$ to the challenger.
- The challenger replies with $ct^* \leftarrow Encrypt(pk, m_0)$.
- The adversary can make more decryption queries to the challenger, with the restriction that it is not allowed to query on ct*.
 - Decryption query: The adversary sends a ciphertext ct ≠ ct* to the challenger. The challenger replies with Decrypt(sk, ct).
- The adversary $\mathcal A$ outputs a bit $b' \in \{0, 1\}$.

Experiment b = 1:

- The challenger samples (pk, sk) \leftarrow Setup and gives pk to \mathcal{A} .
- The adversary can now issue decryption queries to the challenger:
- Decryption query: The adversary sends a ciphertext ct ∈ C to the challenger. The challenger replies with Decrypt(sk, ct).
- The adversary \mathcal{A} sends messages $m_0, m_1 \in \mathcal{M}$ to the challenger.
- The challenger replies with $ct^* \leftarrow Encrypt(pk, m_1)$.
- The adversary can make more decryption queries to the challenger, with the restriction that it is not allowed to query on ct*.
- Decryption query: The adversary sends a ciphertext ct ≠ ct* to the challenger. The challenger replies with Decrypt(sk, ct).
- The adversary $\mathcal A$ outputs a bit $b' \in \{0,1\}$.

We say the encryption scheme satisfies security against chosen-ciphertext attacks (CCA-security) if for all efficient adversaries \mathcal{A} ,

$$CCAAdv[\mathcal{A}] = |Pr[b' = 1 \mid b = 0] - Pr[b' = 1 \mid b = 1]| = negl(\lambda).$$

6 Digital Signatures

A digital signature scheme is defined over a message space \mathcal{M} and a signature space \mathcal{S} (technically, each of these sets can be a function of the security parameter λ) and consists of three main algorithms:

- Setup \rightarrow (vk, sk): The setup algorithm outputs a public verification key vk and a secret signing key sk. (Technically, this algorithm takes the security parameter λ as input).
- Sign(sk, m) $\rightarrow \sigma$: On input the signing key sk and a message $m \in \mathcal{M}$, the signing algorithm outputs a signature $\sigma \in \mathcal{S}$.

• Verify(vk, m, ct) \rightarrow {0, 1}: On input the verification key vk, a message $m \in \mathcal{M}$, and a signature $\sigma \in \mathcal{S}$, the verification algorithm outputs a bit $b \in \{0, 1\}$ (indicating whether the signature is valid or not).

Correctness. The signature scheme is correct if for all (vk, sk) output by Setup and all messages $m \in \mathcal{M}$,

$$Pr[Verify(vk, m, Sign(sk, m)) = 1] = 1.$$

Unforgeability. We start by defining the unforgeability experiment:

Existential unforgeability experiment:

- The challenger samples (vk, sk) ← Setup and gives vk to the adversary.
- The adversary can now make signing queries to the challenger:
 - **Signing query:** The adversary sends $m \in M$ to the challenger. The challenger replies with $\sigma \leftarrow \text{Sign}(\mathsf{sk}, m)$.
- The adversary $\mathcal A$ outputs a message $m^* \in \mathcal M$ and signature $\sigma^* \in \mathcal S$.

We say an adversary \mathcal{A} is admissible for the signature unforgeability game if the adversary does not make a signing query on the message m^* . We say the signature scheme satisfies unforgeability if for all efficient and admissible adversaries \mathcal{A} ,

$$\Pr[\text{Verify}(\text{sk}, m^*, \sigma^*) = 1] = \text{negl}(\lambda).$$