
CS 388H: Cryptography Spring 2025

Homework 2: Symmetric Cryptography

Due: February 19, 2025 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/sp25/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: CBC Padding Oracle Attack [15 points]. Recall that when using a block cipher in CBC
mode, the message must be a multiple of the block size. When encrypting messages whose length is not
a multiple of the block size, the message must first be padded. In the TLS protocol (used for securing
traffic on the web), if v bytes of padding are needed, then v bytes with value (v −1) are appended to the
message. As a concrete example, if 1 byte of padding is needed, a single byte with value 0 is appended
to the message before applying CBC encryption. In TLS, the record layer is secured using an approach
called “MAC-then-Encrypt1” (which as we will soon see, is not the ideal combination). At decryption time,
the ciphertext is first decrypted (and the padding verified) before checking the MAC. In older versions
of OpenSSL, the library reports whether a decryption failure was due to a “bad pad” or due to a “MAC
verification failure.” One might think that it was beneficial to provide an informative error message on
decryption failure. As you will show in this problem, this turns out to be a disaster for security.

Suppose an adversary has intercepted a target ciphertext ct encrypted using AES-CBC. Let cti be any
non-IV block in ct. Let mi be the associated message block. Show that if the adversary is able to submit
ciphertexts to a CBC decryption oracle and learn whether the padding was valid or not, then it can learn
the last byte of mi with probability 1 by making at most 512 queries. Here, the CBC decryption oracle only
says whether the ciphertext was properly padded or not; it does not provide the output of the decryption
if successful. Then, show how to extend your attack to recover all of mi . Hint: Start by showing how to
test whether the last byte of mi is some value t by making 2 queries to the decryption oracle.

Remark: Are there settings where the server would repeatedly decrypt ciphertexts of the user’s choosing?
It turns out that when using IMAP (the protocol email clients use to fetch email) over TLS, the IMAP client
will repeatedly send the user’s password to the IMAP server to authenticate. With the above padding
oracle (implemented using a “timing channel”), an adversary can recover the client’s password in less
than an hour! This problem shows that if a decryption failure occurs, the library should provide minimal
information on the cause of the error. This type of “padding oracle” attack was the basis of the “Lucky 13”
attack on TLS 1.0 (2013)—many years after they were first discovered (2002) and thought to be patched!

1In MAC-then-encrypt, the encryption algorithm first computes a MAC t on the message m, and the ciphertext is the encryption
of the message-tag pair (m, t ).

https://www.cs.utexas.edu/~dwu4/courses/sp25/static/homework.tex
https://gradescope.com/
https://canvas.utexas.edu/
https://www.cs.utexas.edu/~dwu4/courses/sp25/info.html
https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1069/1069.pdf


Problem 2: Coin Flipping over a Network [30 points]. Alice and Bob are deciding between two options
A and B . Alice prefers A while Bob prefers B . To resolve the conflict, Alice and Bob decide to flip a fair
coin. This is easy to do in person, but more challenging when Alice and Bob are communicating over a
network. One approach is for Alice to flip a coin and announce the result to Bob, but then Alice might
bias the coin flip in her favor. In this problem, we will develop the notion of a cryptographic commitment
scheme and show how this enables coin flipping over a network.

A cryptographic commitment scheme is a digital analog of a “sealed envelope.” Specifically, Alice can
commit to a bit b ∈ {0,1} and send the resulting commitment c to Bob (i.e., seal the bit in an envelope). The
commitment c should not reveal anything about the committed bit b. At some subsequent point in time,
Alice can open up the commitment and convince Bob that c is indeed a commitment to the bit b (i.e., open
up the envelope and recover the original bit). The commitment scheme is hiding if c hides the bit b and is
binding if the sender can only open the commitment to a single value b ∈ {0,1}. Let G : {0,1}λ→ {0,1}3λ be
a PRG. In this problem, we will consider the following protocol.

1. Setup: Bob starts by sampling z
R←− {0,1}3λ and sends z to Alice.

2. Commit: Alice samples a seed s
R←− {0,1}λ. To commit to b = 0, Alice sends the commitment c ←G(s)

to Bob. To commit to b = 1, Alice sends the commitment c ←G(s)⊕ z to Bob.
3. Opening: To open a commitment c to a bit b ∈ {0,1}, Alice sends (b, s) to Bob, where b is the bit, and

s is the seed chosen by Alice. An opening (b, s) is valid for a commitment c and initial randomness z
if c =G(s) and b = 0, or c =G(s)⊕ z and b = 1.

Show the following:

(a) We say a commitment scheme is computationally hiding if Bob (who is computationally bounded)
cannot distinguish a commitment to the bit 0 from a commitment to the bit 1, except with negligible
probability. Prove that if G is a secure PRG, then the above commitment scheme is computationally
hiding.

(b) We say a commitment scheme is statistically binding if Alice (who may even be computationally
unbounded) cannot output a commitment c ∈ {0,1}3λ together with valid openings (0, s0) and (1, s1),

except with negligible probability (over the random choice of z
R←− {0,1}3λ). Prove that the above

commitment scheme is statistically binding.

(c) The binding property critically relies on the fact that z
R←− {0,1}3λ is sampled by Bob (i.e., outside

the control of Alice). Suppose instead that we also allowed Alice to choose z. Show that Alice can
efficiently come up with a string z ∈ {0,1}3λ, a commitment c ∈ {0,1}3λ, along with two valid openings
(0, s0) and (1, s1). In this setting, we say that Alice’s commitment is “equivocating.”

(d) Show how the above commitment scheme allows Alice and Bob to implement a coin-flipping protocol
over a network. Your protocol should consist of a maximum of four messages in total. Explain
informally why in your protocol, neither Alice nor Bob can bias the outcome of the coin flip (say,
by choosing their messages adversarially), except with negligible probability. You may assume that
Alice and Bob are computationally bounded (i.e., runs in polynomial time). While you do not need a
formal proof, your explanation should refer to the hiding and binding properties defined above.

(e) The binding property in this commitment scheme holds against all adversaries while our hiding
property only holds against efficient adversaries. Prove that this is inherent: namely, no commitment



scheme can simultaneously be statistically hiding (i.e., the hiding property holds against all adver-
saries) and statistically binding. Note that your argument must apply to all commitment schemes,
not just the one described in this problem.

Problem 3: Cryptographic Combiners [24 points]. Suppose we have two candidate constructionsΠ1,Π2

of a cryptographic primitive, but we are not sure which of them is secure. A cryptographic combiner
provides a way to use Π1 and Π2 to obtain a new construction Π such that Π is secure if at least one of
Π1,Π2 is secure (without needing to know which ofΠ1 orΠ2 is secure). Combiners can be used to “hedge
our bets” in the sense that a future compromise of one ofΠ1 orΠ2 would not compromise the security of
Π. In this problem, we will study candidate combiners for different cryptographic primitives.

(a) Let G1,G2 : {0,1}λ → {0,1}3λ be arbitrary PRG candidates. Define the function G(s1, s2) := G1(s1)⊕
G2(s2). Prove or disprove: if at least one of G1 or G2 is a secure PRG, then G is a secure PRG.

(b) Let H1, H2 : {0,1}∗ → {0,1}λ be arbitrary collision-resistant hash function candidates. Define the
function H(x) := H1(H2(x)). Prove or disprove: if at least one of H1 or H2 is collision-resistant, then
H is collision-resistant.

(c) Let (Sign1,Verify1) and (Sign2,Verify2) be arbitrary MAC candidates2. Define (Sign,Verify) as follows:

• Sign((k1,k2),m): Output (t1, t2) where t1 ← Sign1(k1,m) and t2 ← Sign2(k2,m).

• Verify((k1,k2), (t1, t2)): Output 1 if Verify1(k1,m, t1) = 1 =Verify2(k2,m, t2) and 0 otherwise.

Prove or disprove: if at least one of (Sign1,Verify1) or (Sign2,Verify2) is a secure MAC, then (Sign,Verify)
is a secure MAC.

Problem 4: Time Spent [1 point]. How long did you spend on this problem set? This is for calibration
purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?

2Namely, you can assume that they are correct (but could be arbitrarily broken).


