
CS 388H: Cryptography Spring 2025

Homework 4: Public-Key Cryptography

Due: April 9, 2025 at 11:59pm (Submit on Gradescope) Instructor: David Wu

Instructions. You must typeset your solution in LaTeX using the provided template:

https://www.cs.utexas.edu/~dwu4/courses/sp25/static/homework.tex

You must submit your problem set via Gradescope (accessible through Canvas).

Collaboration Policy. You may discuss your general high-level strategy with other students, but you may
not share any written documents or code. You should not search online for solutions to these problems. If
you do consult external sources, you must cite them in your submission. You must include the names of
all of your collaborators with your submission. Refer to the official course policies for the full details.

Problem 1: Encrypted Group Chat [20 points]. Suppose a group of n people (denoted P1, . . . ,Pn) wants
to set up a shared key for an encrypted group chat. At the end of the group key-exchange protocol,
everyone within the group should know the key, but an eavesdropper on the network should not. We will
use the following variant of Diffie-Hellman over a group G of prime order p and generator g :

• At the beginning of the protocol, P1 chooses s
R←−Zp . We will view P1 as the group administrator that

all of the other parties know.

• Each of the other parties Pi (2 ≤ i ≤ n) samples ri
R←−Zp and sends xi ← g ri to the group administra-

tor P1. The administrator P1 replies to Pi with xs
i .

• The group key is then defined to be k ← H(g s), where H : G→ {0,1}λ is a hash function.

Both the group description (G, p, g ) and the hash function H are public and known to everyone (both the
protocol participants and the eavesdropper).

(a) Show that both the group administrator P1 and each of the parties Pi (2 ≤ i ≤ n) are able to efficiently
compute the group key (except perhaps with negligible probability).

(b) We say that the group key-exchange protocol is secure against eavesdroppers if no efficient adversary
who sees the transcript of messages sent by the honest parties P1, . . . ,Pn is able to distinguish the
group key k from a uniform random string over {0,1}λ, except perhaps with negligible probability.
If we model H as an “ideal hash function” (i.e., random oracle), it suffices to argue that the shared
Diffie-Hellman secret g s is unguessable: namely, for all efficient adversaries A,

Pr[A(x2, xs
2, . . . , xn , xs

n) = g s] = negl(λ), (1)

where xi = g ri and r2, . . . ,rn , s
R←− Zp . This means that an eavesdropper who only observes the

messages sent by the honest parties cannot guess g s , and correspondingly, the shared key H(g s) is
uniformly random and unknown to the adversary.
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Show that under the CDH assumption in G, the shared Diffie-Hellman secret g s in the group key-
exchange protocol above is unguessable (i.e., Eq. (1) holds for all efficient adversaries A). As usual,
you should consider the contrapositive: show that if there exists an efficient adversary A that can
predict g s from the above challenge tuple (x2, xs

2, . . . , xn , xs
n), then there exists an efficient algorithm B

that breaks CDH in G. Your algorithm should work for any polynomially-bounded n (i.e., you should
not fix a value of n in your reduction) Hint: Your algorithm B may need to invoke A more than once.
Remember to compute the advantage of the adversary you construct.

Problem 2: Collision-Resistant Hashing from RSA [15 points]. Let N = pq be an RSA modulus and take

e ∈N to be a prime that is also relatively prime to ϕ(N ). Let u
R←−Z∗

N , and define the hash function

HN ,e,u : Z∗
N × {0, . . . ,e −1} →Z∗

N where HN ,e,u(x, y) = xe uy ∈Z∗
N .

In this problem, we will show that under the RSA assumption, HN ,e,u defined above is collision-resistant.
Namely, suppose there is an efficient adversary A that takes as input (N ,e,u) and outputs (x1, y1) ̸= (x2, y2)
such that HN ,e,u(x1, y1) = HN ,e,u(x2, y2). We will use A to construct an efficient adversary B that takes as

input (N ,e,u) where u
R←−Z∗

N and outputs x such that xe = u ∈Z∗
N .

(a) Show that using algorithm A defined above, algorithm B can efficiently compute a ∈ZN and b ∈Z
such that ae = ub (mod N ) and 0 ̸= |b| < e. Remember to argue why any inverses you compute will
exist.

(b) Use the above relation to show how B can efficiently compute x ∈ZN such that xe = u. Note that B
does not know the factorization of N , so B cannot compute b−1 (mod ϕ(N )). Hint: What is gcd(b,e)?

Problem 3: Correlated Primes and Factoring [15 points]. When generating an RSA modulus N = pq ,
it is important to sample p, q independently. Suppose however we have a limited entropy pool, and the
primes p, q we sample happen to lie in a narrow interval:

∣∣p −q
∣∣< N 1/4. We will show that even though

N 1/4 is exponentially large, factoring is easy in this setting.

(a) Given N = pq where
∣∣p −q

∣∣< N 1/4, construct an efficient algorithm that recovers p, q . The running
time of your algorithm should be polynomial in the length of N (i.e., poly(log N )). Hint: First show
that the arithmetic meanµ= (p+q)/2 is very close to

p
N (i.e., 0 <µ−p

N < 1). One of the inequalities
(µ>p

N ) follows by the arithmetic-mean geometric-mean (AM-GM) inequality, which you can use
without proof.

(b) Why is this attack not an issue if we sample p, q independently? (No need for a precise calculation.)

Problem 4: Computing on Encrypted Data [20 points]. Let N = pq be an RSA modulus and suppose
that gcd(N ,ϕ(N )) = 1. Consider the following public-key encryption scheme with message space ZN . The
public key pk = N is the RSA modulus N = pq and the secret key sk is the factorization sk = (p, q). Let

g = 1+N ∈Z∗
N 2 . To encrypt a message m ∈ZN , sample h

R←−Z∗
N 2 and compute c ← g mhN ∈Z∗

N 2 .

(a) Show that the discrete logarithm assumption base g inZ∗
N 2 is easy. Namely, give an efficient algorithm

that takes as input (g ,h) where h = g x for some x ∈ ZN , and outputs x. Remember to be explicit
about the existence of any inverses you use in your solution. Hint: Use the binomial theorem:
(a +b)k =∑k

i=0

(k
i

)
ai bk−i .



(b) Show how to efficiently implement the decryption algorithm Decrypt(sk,c). Namely, describe an
efficient algorithm that given the secret key sk = (p, q) and a ciphertext c = g mhN , outputs the
message m ∈ZN . You may use the fact that ϕ(N 2) = Nϕ(N ).

(c) Show that this public-key encryption scheme is semantically secure assuming that no efficient
adversary is able to distinguish the following two distributions:

(N ,u) and (N , v),

where N = pq is an RSA modulus, u
R←− Z∗

N 2 and v
R←− {

h ∈ Z∗
N 2 : hN

}
. Namely, show that the above

encryption scheme is semantically secure assuming that it is hard to distinguish random values in
Z∗

N 2 from random N th powers in Z∗
N 2 .

(d) Show that given the public key pk and two ciphertexts c1 ← Encrypt(pk,m1), c2 ← Encrypt(pk,m2),
there is an efficient algorithm that outputs a new ciphertext c where Decrypt(sk,c) = m1 +m2 ∈ZN .
Your algorithm should only depend on public parameters and not the value of the messages m1,m2.

Remark: This is an example of an encryption scheme that supports computation on encrypted values.

Problem 5: Time Spent [2 points]. How long did you spend on this problem set? This is for calibration
purposes, and the response you provide does not affect your score.

Optional Feedback. Please answer the following optional questions to help us design future problem
sets. You do not need to answer these questions. However, we do encourage you to provide us feedback
on how to improve the course experience.

(a) What was your favorite problem on this problem set? Why?

(b) What was your least favorite problem on this problem set? Why?

(c) Do you have any other feedback for this problem set?

(d) Do you have any other feedback on the course so far?


