Instructor: David We (dwelf@cs.utexas.edu)

TA: Eli Bradley

Overarching goal of cryptography: securing communication over untrusted networks

Alice Bob

third party should not be able to (confidentiality) 1) eavesdrop of communication (integrity) 2) tamper with the communication

Today: secure communication on web (https://...) TLS protocol (transport layer security) two components : handshake (key exchange) record layer (confidentiality + integrity)

protecting data at rest: disk encryption

Most of this course: study mechanics for protecting confidentiality + data - Encryption schemes for confidentiality

- "classical" cryptography - Signature schemes for message integrity
- Key exchange for setting up shared secrets

End of this course: post-quantum cryptography (lattice-based cryptography) 1> will enable expressive corpolities (e.g., fully homomorphic encryption)

Logistics and administrivia:

- Course website: https://www.cs.utexas.edu/~dwu4/courses/sp25
- See Ed Discussion for announcements, notes will be posted to course website (1-2 days after lecture)
- Homework submission via Gradescope (enroll via Carvos)
- Course consists of 5 homework assignments (worth 70%) and two in-class exams (worth 30%)
- Five late days for the semister: use in 24-hour increments, max 72 hours (3 late days) for any single assignment
- This is a class on theoretical foundations social will be on formally analyzing security of different schemes - Will assume confort with mothematical proofs as well as familiarity with concepts from algorithms and complexity theory (see course prerequistes)
 - Homework + exams are written assignments (no programming comporant)

A brief history of cryptography: Original goal was to protect communication (in times of war) Basic idea: Alice and Bob have a shared key k Alice computes $C \in Encript(k, m)$ *i j j j j ciphertext key* message (plaintext) Bob computes m < Decrypt (k, c) to recover the message This tuple (Encrypt, Decrypt) is called a cipher K, M, C are sets (eg., K= M= C = {0,1323) Definition. A cipher is defined over (K, M, C) where K is a key-space, M is a message space and C is a ciphertext space, and consists of two absorithms (Encrypt, Decrypt): Encrypt: $K \times M \rightarrow C$ } functions should be "efficiently-computable" Decrypt: $K \times C \rightarrow M$ } theory: runs in probabilistic <u>polynomial</u> time [algorithm can be <u>randomized</u>] practice: fast on an actual computer (e.g., < 10ms on my laptop) Correctness: YKEK, YmEM: Decrypt (k, Encrypt(k, m)) = m "decrypting a ciphertext recovers the original message" Early ciphers: - Caesar cipher: "shift by 3" AHD Not a cipher! There is no key! Anyone can decrypt! L> Algorithm to encrypt is assumed to be public. <u>NEVER RELY ON SECURITY BY OBSCURITY!</u> - Harder to change system than a key BH⇒E $C \mapsto F$; ХнэА YHDB - Less scrutiny for secret algorithms $Z \mapsto C$ - Caesar cipher ++ : "shift by k" (k=13: ROT-13) k is the key > Still totally broken since there are only 26 possible keys (simply via brute force guessing) - Substitution cipter: the key defines a permutation of the alphabet (i.e., substitution) $\begin{array}{c|c} A \mapsto C \\ B \mapsto X \\ C \mapsto T \\ \hline \end{array}$ $Z \mapsto T \leftarrow$ substitution table is the key How many keys? For English alphabet, 26! $\approx 2^{88}$ possible keys very large value, <u>cannot</u> brate force the key

- Still broken by frequency analysis e is the most frequent character (~12%) g is the least frequent character (~0.10%)
- Can also look at digram, trigram frequencies
- Vigener apper (late 1500s) "polyalphabetic substitution" key is short phrase (used to determine substitution table): m = HELLO
 - k = CAT
 - k = un, Encrypt (k, m): HELLO + <u>CATCA</u> < repeat the key "EEPP

L'interpret letters as number between 1 and 26 addition is modulo 26

if we know the key length, can break using frequency analysis otherwise, can try all possible key lengths l=1,2,...

L> general assumption: keys will be much shorter than the message lotherwise if we have a good mechanism to deliver long keys securely, then can use that mechanis to share messages directly

Francier substitution ciphers: Enigma (based on rator machines) but ... still breakable by frequency analysis

Today: encryption done using computers, lots of different ciphers - AES (advanced encryption standard; 2000) "block cipher" "stream cipher"

													not	;dea	1 pr	perty.	•••	_								
<u>One</u>	time	. pa	<u>r (</u>	Vigen	we i	ipher	when	e k	ey is	45	long	as H	ne m	25500	<u>و!</u>]`											
	ĸ	, = ¹	٥,١	៶	7	, Encryp	+(k,	m):	l out	tput	رء	k⊕ i	m													
	M	_ = {	0,1	3 ⁿ	•	Decry	pt(k,	د):	ow	tput	m =	k⊕	с													
	C	= 3	{o,(]	n S						1		٢	- 674	wise (exclu	sive or	- 0940	otion	(0.	holition	mod	(2)				
Corre	ctues	5:	Tak	و معرم	k	e {0,1) [*] . ,	m E	50,13	<u>^</u> :							1									
				1	Dec	xypt (k, E	NORY	pt (k	. m)) =	k e	ə (k	₽,	n) =	(k	⊌k)	ÐM	- m		(sinc	e k l	θk	= 0 [°])	
						- N - `			, ,			•								_	•					
Is	this	Secu	ne?	How	s de	we	defi	ne s	e cuid	ty ?																
-	Give	en (r ci	pher te	x +, (Cannot	reco	over	the	1 key	?															
		Νοτ	Goo	D! S	ays n	othing	abor	ut hi	ding	Mes	50.QC-	Encr	ypt (k, m)	= m	would	d be	sec	ure	under	. this	definit	ion, b	ut H	vis <i>J</i> e	Lene
					s to	tally in	NSE CULY	ne in	U stuitie	ely!	0									_						
-	- Gi	NEA	م ن	pharte	(+, C	unnot	rece	over	the	me	چەمھرو															
		No	σω	000	Can	leak	Part	of	He	ms	ل سرو.	Ercry	ot (k	. (mo	ma) = (m	. m,	Đk)	τ	his en	cryptio	n migh	t be	consi	dered	secure
					but	leaks	hal	AF 7		دي	0 	[Imag	ive i	Fme	scal	سمع	". "US	ernan	e: al	ice	Passu	ioral :	12349	,, 6		
-	- G.	en a	~ دئە	heatex	+ co	wat (ecove	c 0.1	w bit	ts :	the	messan			0								L>	this	might	be the
		No	το	.000 !	Can	atill	learn	Par	l itv o	f the	_ bits	امد) every	0025	. У	bits)	etc	Infor	motion	sfill	leaked	٨		string	that	is
-	- G.w	en o	- c.o	herter	t. lea	un r	15thin	- a	out	the	mess	مبو.		1										lecke	1 i	
		Cat		Bad	r hor	s to	defin	0 4	9 N.S.			J														
Com	na w	o w	th a	d	de fini	tions	ັດ	diffice	. +).	Def	inition	o have	45	rule		llo t	ad 1	متهمه	l be	havior	lie	. caph	re t	hoo	enoush	dess
٥f	() atta	l cks/	Č													=						,			5	
	Ľ	-> 1	tia n	urt d	è cou	oto is	aett	ing J	fre a	defin	itions	riaht	. 7	ne - 19	970s :	coupt	oom oh	y ha	s noti	ed or	inte	ittion.	bat i	ntrition	n is	otten
			51				0	9				. ე				64000	1 3	ust be	cause	τ	country	hreak	it	does	not r	ean
How	do 1	we	Captu	re "	learni	m not	thing	abou	t the	e m	معمد	* ?				() -				Sor	reare	else.	canno	+	
	If 4	the 1	Lev i	s ran	dom.	0 then	Ciph	<i>u</i> -text	sha	mld	not	ative tim	forma	rtion	about	the	NESS	eae,								
			1				,					1						5								
Def	inition	. A	\ cip	her	(Enu	rypt, T)ecry1	2 †)	satis	fies	Dect	ect se	creci	۲. ^ر	for	r all	messa	مووج	M., m	n, E	M,	and c	al cir	pherter	ats c	e C :
						Pr	k e	R	: E,	naryp	1 7 (k,	m。) =	دا	- 1	٩٠٢١	R K	(: E) xnorypt	(k, 1	m,) =	c)					
								- <u>\</u>					<u>,</u>					,.								
						P	robat	is "	tha: C, u	t ei shere	ncrypt the	pobel	bility	is												
								taken	ove	e fh	e ram	mode	choi	ie of	F											
								the	key	ĸ																

Perfect secrecy says that given a ciphertext, any two messages are equally likely.

=> Cannot infer anything about underlying message given only the ciphertext (i.e., "ciphertext - only" attack)

<u>Theorem</u>. The one-time pad satisfies perfect secrecy. <u>Proof</u>. Take any message $m \in \{0,1\}^n$ and ciphertext $C \in \{0,1\}^n$. Then, $P_n [L \in \mathbb{R} : \{0,1\}^n : Forevet(k,m) = C] = P_n [k \in \mathbb{R} : \{0,1\}^n : k \oplus m = C]$

$$Fr[k \leftarrow 10,15 : Excrypt(k,m) - C] = Fr[k \leftarrow 10,15 : k \oplus m - C]$$
$$= Pr[k \leftarrow 50,15^{m} : k = m \oplus C]$$
$$= \frac{1}{2^{n}}$$

This holds for all messages in and ciphertexts c, so one-time put satisfies perfect secrecy.